## DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY UTTAR PRADESH, LUCKNOW



# EVALUATION SCHEME & SYLLABUS FOR

### **B.TECH. (BIOTECHNOLOGY) 3RD YEAR**

### **BASED ON**

# AICTE MODEL CURRICULUM & NEP2020

[Effective from the Session: 2024-25]

|             |                   |                                                                       | SE | MF      | CST | ER V | V                        |       |    |              |       |        |
|-------------|-------------------|-----------------------------------------------------------------------|----|---------|-----|------|--------------------------|-------|----|--------------|-------|--------|
| SI. Subject |                   |                                                                       |    | Periods |     |      | <b>Evaluation Scheme</b> |       |    | End Semester |       |        |
| No.         | Codes             | Subject                                                               | L  | Т       | Р   | СТ   | TA                       | Total | TE | PE           | Total | Credit |
| 1           | BBT501            | Genetic Engineering                                                   | 3  | 1       | 0   | 20   | 10                       | 30    | 70 |              | 100   | 4      |
| 2           | BBT502            | Fermentation Biotechnology                                            | 3  | 1       | 0   | 20   | 10                       | 30    | 70 |              | 100   | 4      |
| 3           | BBT503            | Bioinformatics I                                                      | 3  | 1       | 0   | 20   | 10                       | 30    | 70 |              | 100   | 4      |
| 4           | BBT051-<br>054    | Departmental Elective-I                                               | 3  | 0       | 0   | 20   | 10                       | 30    | 70 |              | 100   | 3      |
| 5           | BBT055-<br>058    | Departmental Elective-II                                              | 3  | 0       | 0   | 20   | 10                       | 30    | 70 |              | 100   | 3      |
| б           | BBT551            | Genetic Engineering Lab                                               | 0  | 0       | 2   | 20   | 30                       | 50    |    | 50           | 100   | 1      |
| 7           | BBT552            | Fermentation Biotechnology<br>Lab                                     | 0  | 0       | 2   | 20   | 30                       | 50    |    | 50           | 100   | 1      |
| 8           | BBT553            | Bioinformatics-I (Virtual Lab)                                        | 0  | 0       | 2   | 20   | 30                       | 50    |    | 50           | 100   | 1      |
| 9           | BCC551            | Mini Project or Internship<br>Assessment*                             | 0  | 0       | 2   |      | 50                       | 50    |    | 50           | 100   | 1      |
| 10          | BNC501/<br>BNC502 | Constitution of India /<br>Essence of Indian Traditional<br>Knowledge | 2  | 0       | 0   | 20   | 10                       | 30    | 70 |              |       | NC     |
| 11          |                   | MOOCs (Essential for Hons.<br>Degree)                                 |    |         |     |      |                          |       |    |              |       |        |
|             |                   | Total                                                                 | 17 | 3       | 8   |      |                          |       |    |              | 1000  | 22     |

\*The Mini Project or internship (4 weeks) conducted during summer break after IV semester and will be assessed during V semester.

#### DEPARTMENTAL ELECTIVE-I

| BBT051 | Pharmaceutical Biotechnology |
|--------|------------------------------|
| BBT052 | Nano Biotechnology           |
| BBT053 | Biomedical Instrumentation   |
| BBT054 | Metabolic Engineering        |

#### **DEPARTMENTAL ELECTIVE-II**

| BBT055 | Biofuel & Alcohol Technology                |
|--------|---------------------------------------------|
| BBT056 | Descriptive Statistics & Process<br>Control |
| BBT057 | 3D Printing Techniques                      |
| BBT058 | Molecular Modeling & Drug<br>Design         |

|             | SEMESTER VI       |                                                                       |         |   |   |                          |    |       |              |    |       |        |
|-------------|-------------------|-----------------------------------------------------------------------|---------|---|---|--------------------------|----|-------|--------------|----|-------|--------|
| SI. Subject |                   |                                                                       | Periods |   |   | <b>Evaluation Scheme</b> |    |       | End Semester |    |       |        |
| No.         | Codes             | Subject                                                               | L       | Т | Р | СТ                       | TA | Total | TE           | PE | Total | Credit |
| 1           | BBT601            | Bioprocess Engineering II                                             | 3       | 1 | 0 | 20                       | 10 | 30    | 70           |    | 100   | 4      |
| 2           | BBT602            | Plant Biotechnology                                                   | 3       | 1 | 0 | 20                       | 10 | 30    | 70           |    | 100   | 4      |
| 3           | BBT603            | Bioinformatics II                                                     | 3       | 1 | 0 | 20                       | 10 | 30    | 70           |    | 100   | 4      |
| 4           | BBT061-<br>064    | Departmental Elective-III                                             | 3       | 0 | 0 | 20                       | 10 | 30    | 70           |    | 100   | 3      |
| 5           |                   | Open Elective-I                                                       | 3       | 0 | 0 | 20                       | 10 | 30    | 70           |    | 100   | 3      |
| 6           | BBT651            | Bioprocess Engineering II<br>Lab                                      | 0       | 0 | 2 | 20                       | 30 | 50    |              | 50 | 100   | 1      |
| 7           | BBT652            | Plant Biotechnology Lab                                               | 0       | 0 | 2 | 20                       | 30 | 50    |              | 50 | 100   | 1      |
| 8           | BBT653            | Bioinformatics II Lab                                                 | 0       | 0 | 2 | 20                       | 30 | 50    |              | 50 | 100   | 1      |
| 9           | BNC601/<br>BNC602 | Constitution of India /<br>Essence of Indian Traditional<br>Knowledge | 2       | 0 | 0 | 20                       | 10 | 30    | 70           |    |       | NC     |
| 10          |                   | MOOCs (Essential for Hons.<br>Degree)                                 |         |   |   |                          |    |       |              |    |       |        |
|             |                   | Total                                                                 | 17      | 3 | 6 |                          |    |       |              |    | 800   | 21     |

#### DEPARTMENTAL ELECTIVE-III

| BBT061 | Animal Biotechnology                 |
|--------|--------------------------------------|
| BBT062 | Biomarker & Diagnostics              |
| BBT063 | Food Biotechnology                   |
| BBT064 | Entrepreneurship in<br>Biotechnology |

B.Tech. (Biotechnology) 3<sup>rd</sup> Year 5<sup>th</sup> Sem Syllabus

| 1 | SUBJECT CODE: BBT501                        | <b>COURSE TITLE:</b> Genetic Engineering |
|---|---------------------------------------------|------------------------------------------|
| 2 | EXAM DURATION: 3 HOURS                      | SEMESTER: V                              |
| 3 | <b>L:T:P::</b> 3 : 1 : 0 <b>CREIDTS :</b> 4 | PREREQUISITES: Knowledge of Molecular    |
|   |                                             | Biology                                  |

#### **COURSE OBJECTIVES:**

| To Provide knowledge of manipulation of Genetic Material and Recombinant Technology   |
|---------------------------------------------------------------------------------------|
| To teach the construction of genomic c-DNA libraries, cloning and strain improvement  |
| To develop understanding of DNA sequencing, Molecular markers and related techniques. |
| Application of Genetic Engineering and its application                                |
| To impart knowledge of cell signaling and Ethical issues                              |

#### COURSE OUTCOMES (SIX): Upon completion of this course, the students will be able to:

| CO1 | To be able to appraise the appropriate use of host and vector for gene cloning               |
|-----|----------------------------------------------------------------------------------------------|
| CO2 | Identification of appropriate method for DNA delivery into the host                          |
| CO3 | Use of gene library for screening of desired gene sequence/protein                           |
| CO4 | Cloning process of whole organism and its application                                        |
| CO5 | Process of recombinant protein expression, cell signaling and ethical issues related to Gene |
|     | transfer                                                                                     |
| CO6 | To be able to use acquired knowledge for commercial products                                 |

#### **CO-PO MAPPING (1 TO 3 SCALE)**

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-<br>10 | PO-<br>11 | PO-<br>12 |
|-------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|
|       |      |      |      |      |      |      |      |      |      | 10        | 11        | 12        |
| CO-1  | 1    | 1    | 2    | 1    | 2    | 1    | 3    | 1    | 2    | 2         | 2         | 3         |
| CO-2  | 1    | 2    | 2    | 1    | 1    | 2    | 1    | 1    | 1    | 2         | 1         | 3         |
| CO-3  | 1    | 2    | 1    | 2    | 1    | 2    | 1    | 1    | 2    | 1         | 2         | 3         |
| CO-4  | 1    | 2    | 1    | 2    | 1    | 1    | 2    | 2    | 1    | 2         | 2         | 3         |
| CO-5  | 3    | 2    | 2    | 3    | 2    | 2    | 2    | 1    | 1    | 2         | 1         | 3         |
| CO-6  | 1    | 1    | 3    | 1    | 2    | 3    | 2    | 2    | 2    | 1         | 1         | 3         |

- 1. T.A Brown (2006). Gene cloning and DNA analysis, WILEY-BLACKWELL
- 2. Molecular Biology of the Cell (2006) Bruce Alberts.6<sup>th</sup> edition
- **3.** Molecular Cloning, (2001) A laboratory Manual. Sambrook, J., Fritsch, E.F., Mariatis.3rd edition (Vol.1,2,3)
- **4.** S.B Primrose (2001). Molecular biotechnology. Panama Publishing corporation, 2<sup>nd</sup> edition
- 5. Genetic Engineering (2009) Dr Smita Rastogi & Dr Neelam Pathak, Oxford University Press

| UNITS | CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LECTURE<br>HOURS |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Ι     | Manipulation of DNA – Restriction and Modification enzymes,<br>Design of linkers and adaptors. Characteristics of cloning and<br>expression vectors basedon plasmid and bacteriophage, Vectors for<br>yeast, insect and mammalian systems, Prokaryotic and eukaryotic<br>expression host systems, Tissue specific promoter, wound inducible<br>promoters, Strong and regulatable promoters, promoter analysis<br>(EMSA and DNA foot printing); Introduction of recombinant DNA<br>in to host cells and selection methods. | 8                |
| II    | Construction of genomic and cDNA libraries, Artificial chromosomes<br>– BACs and YACs, Chromosome walking, Screening of DNA<br>libraries using nucleic acid probes and antisera., strain improvement<br>of industrially important organisms, CRISPER / Cas system of gene<br>editing.                                                                                                                                                                                                                                     | 8                |
| III   | Maxam Gilbert's and Sanger Coulson's and automated methods of<br>DNA sequencing, Inverse PCR, Nested PCR, AFLP-PCR, Allele<br>specific PCR, Assembly PCR, Asymmetric PCR, Hot start PCR,<br>Colony PCR, single cell PCR, Real-time PCR/qPCR – SYBR green<br>assay, TaqMan assay, Molecular beacons, Applications of PCR; Site<br>directed mutagenesis.; molecular markers (RAPD, RFLP, AFLP,<br>SNP)                                                                                                                      | 8                |
| IV    | Applications of genetic engineering; cloning of sheep (Dolly) & other<br>mammals; applications in conservation; therapeutic vs. reproductive<br>cloning; ethical issues and the prospects for human cloning; Gene<br>therapy; DNA drugs and vaccines.                                                                                                                                                                                                                                                                     | 8                |
| V     | Basic concepts of cell signaling, Extracellular signal molecule and<br>their receptors, Operation of Signaling molecules over various<br>distances, Cellular response to specific combinations of extracellular<br>signal molecules; Nuclear receptor; Ion channel linked, G-protein<br>mediated receptors, Relay of signal by activated cell surface<br>receptors via intracellular signaling proteins,<br>Intracellular Signaling proteins as molecular switches.                                                       | 8                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40               |

| 1 | SUBJECT CODE: BBT502                      | <b>COURSE TITLE:</b> Fermentation Biotechnology |
|---|-------------------------------------------|-------------------------------------------------|
| 2 | <b>EXAM DURATION:</b> 3 HOURS             | SEMESTER: V                                     |
| 3 | <b>L:T:P::</b> 3 : 1:0 <b>CREIDTS :</b> 4 | PREREQUISITES: Basic Knowledge of               |
|   |                                           | elementary microbiology and basic bioprocessing |

#### **COURSE OBJECTIVES:**

provide knowledge of fermentation technology and its industrial application. teach the inoculums development, microbial kinetics and its measurement. develop understanding of media component, sterilization and types of fermentation processes. provide knowledge of regulation, control and overproduction of metabolites. impart knowledge related to production and application of metabolites.

#### **COURSE OUTCOMES:** Upon completion of this course, the students will be able to:

| CO1        | derstanding of the concepts and process technologies of fermentation.                    |  |  |  |
|------------|------------------------------------------------------------------------------------------|--|--|--|
| CO2        | plication and use of different raw materials and its use in industrial scale production. |  |  |  |
| CO3        | gulatory system in the microorganism.                                                    |  |  |  |
| <b>CO4</b> | ain improvement technologies and its role in Fermentation.                               |  |  |  |
| CO5        | ncepts of the scale up and scale down criteria of fermentation process and production of |  |  |  |
|            | metabolites.                                                                             |  |  |  |
| CO6        | Concepts about the processing and industrial manufacturing of antibiotics.               |  |  |  |

#### **CO-PO MAPPING (1 TO 3 SCALE)**

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO- | PO- | PO- |
|-------|------|------|------|------|------|------|------|------|------|-----|-----|-----|
|       |      |      |      |      |      |      |      |      |      | 10  | 11  | 12  |
| CO-1  | 3    | 2    | 2    | 2    | 2    | 1    | 2    | 1    |      | 1   | 2   | 3   |
| CO-2  | 3    |      | 3    | 2    | 2    | 2    | 3    | 2    | 1    | 2   |     | 3   |
| CO-3  | 3    | 3    | 2    | 2    | 1    | 1    | 2    | 1    | 2    | 1   | 2   | 2   |
| CO-4  |      |      | 3    | 3    |      | 2    | 3    | 2    |      | 1   |     | 3   |
| CO-5  |      |      | 2    | 3    | 1    | 2    | 2    | 2    | 2    | 1   |     | 2   |
| CO-6  | 1    |      | 1    | 3    | 3    | 2    | 1    | 2    |      | 2   | 2   | 2   |

- 1. O Levenspeil (2006) Chemical Reaction Engineering, 3<sup>rd</sup> Edition, Wiley India.
- 2. D.W.Mount; Bioinformatics-Sequence and genome analysis; Cold Spring HarbourLab press.
- 3. B.N.Mishra; Bioinformatics: Concept and application, Pearson Education (in press)
- 4. O' Reilly; Developing Bioinformatics computer skills-1stIndian edition, SPD publication.
- 5. Anthony J.F. Griffiths et al; An introduction to genetic analysis, 1<sup>st</sup> Ed
- 6. Michael Starkey and Ramnath Elaswarapu; Genomics protocols, Humana press

| Course | e Details: Fermentation Biotechnology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Unit   | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Contact<br>Hours |
| Ι      | Introduction to fermentation technology: Interaction between Bio-chemical<br>engineering, Microbiology and Biochemistry. History and development of<br>fermentation industry: Microbial culture selection for fermentation processes,<br>Strain development; Preservation and improvement of industrially important<br>microorganisms.                                                                                                                                                                                                                                | 8                |
| Π      | Inoculum development for industrial fermentation & Microbial Kinetics:<br>Introduction, Criteria for transfer of inoculum, development of inocula for<br>bacterial processes, yeast processes and mycelial processes. Inoculum<br>development for plant fermenter, aseptic method of inoculation, achievement<br>and maintenance of aseptic conditions. Fermentation Material and Energy<br>balance, Microbial growth kinetics: Microbial growth cycle, measurement of<br>growth, Batch culture, continuous culture, fed-batch culture, applications and<br>examples. | 9                |
| III    | Media ingredients, medium formulation, oxygen requirements, antifoams,<br>medium optimization, Media sterilization, Batch Process (thermal death<br>kinetics), continuous sterilization process; sterilization of fermenter and other<br>ancillaries, filter sterilization of air and media.                                                                                                                                                                                                                                                                          | 9                |
| IV     | Different regulatory mechanisms involved in controlling the catabolic and<br>anabolic processes of microbes. Induction, nutritional repression, carbon<br>catabolite repression, crabtree effect, feedback inhibition and feedback<br>repression; Concept for overproduction of primary and secondary metabolites.                                                                                                                                                                                                                                                    | 8                |
| V      | Details of the process, parameters and materials -for the industrial manufacture of Antibiotics ( $\beta$ -lactum), Solvents (acetone) Amino acid (Lysine), Organic acids (Citric acid), Alcohols (Ethanol), Ind. Enzymes (Protease/Amylase) and Biopharmaceuticals (Insulin/Interferon etc.)-Microbial Transformations, Microbial leaching.                                                                                                                                                                                                                          | 8                |

| 1 | SUBJECT CODE: BBT503                        | <b>COURSE TITLE: Bioinformatics I</b>     |
|---|---------------------------------------------|-------------------------------------------|
| 2 | <b>EXAM DURATION:</b> 3 HOURS               | SEMESTER: V                               |
| 3 | <b>L:T:P::</b> 3 : 1 : 0 <b>CREIDTS :</b> 4 | PREREQUISITES: Basic Knowledge of         |
|   |                                             | Molecular Biology, Mathematics & Computer |

#### **COURSE OBJECTIVES:**

Teach the basic concept of Bioinformatics, databases & Sequence analysis.

Develop the understanding of sequence analysis.

Provide knowledge of scoring matrix and detection of functional sites etc.

To impart knowledge related to phylogenetic analysis protein structure prediction.

#### COURSE OUTCOMES (SIX): Upon completion of this course, the students will be able to:

| -          |                                                                                         |  |  |  |
|------------|-----------------------------------------------------------------------------------------|--|--|--|
| CO1        | Understand concepts and application of Bioinformatics, types of databases, sequence     |  |  |  |
|            | similarity, sequence patterns and profiles.                                             |  |  |  |
| <b>CO2</b> | Use sequence alignment techniques, database searching, pair wise and multiple sequence  |  |  |  |
|            | alignment using various tools.                                                          |  |  |  |
| CO3        | Understand scoring matrices and its types including PAM, BLOSUM series and matrices     |  |  |  |
|            | for nucleic acid and protein sequences.                                                 |  |  |  |
| <b>CO4</b> | Apply phylogeny and its concepts in molecular evolution and different methods of        |  |  |  |
|            | Phylogenetic tree construction.                                                         |  |  |  |
| CO5        | Understand and apply the protein structure prediction and application of bioinformatics |  |  |  |
|            | in drug designing.                                                                      |  |  |  |
| CO6        | Identify and utilize various biomolecular sequence file formats such as GenBank,        |  |  |  |
|            | EMBL, FASTA, GCG, and others.                                                           |  |  |  |

#### CO-PO MAPPING (1 TO 3 SCALE)

| CO/PO | PO- |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|       | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  |
| CO-1  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 2   | 1   | 1   | 1   |
| CO-2  | 3   | 1   | 2   | 1   | 1   | 1   | 1   | 1   | 2   | 1   | 1   | 1   |
| CO-3  | 2   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 2   | 1   | 1   | 1   |
| CO-4  | 1   | 1   | 1   | 1   | 1   | 3   | 1   | 1   |     | 1   | 1   | 1   |
| CO-5  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 2   | 1   | 1   | 1   |
| CO-6  | 1   | 2   | 1   | 1   | 2   | 1   | 2   | 1   | 1   | 1   | 1   | 2   |

- 1. D.W.Mount; Bioinformatics-Sequence and genome analysis; Cold Spring HarbourLab press.
- 2. B.N.Mishra; Bioinformatics: Concept and application, Pearson Education (in press)
- 3. O' Reilly; Developing Bioinformatics computer skills-1stIndian edition, SPD publication.
- 4. Anthony J.F. Griffiths et al; An introduction to genetic analysis, 1stEd
- 5. Michael Starkey and Ramnath Elaswarapu; Genomics protocols, Humana press

|      | SE DETAILS: BIOINFORMATICS I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>a</b>         |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contact<br>Hours |
| Ι    | Introduction to Bioinformatics; Biological databases: Nucleotide databases,<br>Protein databases, Specialized databases; Laboratory data submission and<br>data retrieval; Various file formats for biomolecular sequences: Genbank,<br>EMBL, FASTA, GCG, msf, nbrf-pir etc.; Basic concepts of sequence<br>similarity: identity and homology, definitions of homologues, orthologues,<br>paralogues; Sequence patterns and profiles                                                                                                                                                                                         | 8                |
| Π    | Sequence Alignment And Database Searching: Introduction, Evolutionary<br>Basis of Sequence Alignment, Optimal alignment method, Statistical<br>Significance of Alignment. Database searching Artifacts; Database similarity<br>searching: FASTA, BLAST, Various versions of basic BLAST and FASTA,<br>Advance version of BLAST: PHI-BLAST and profile-based database<br>searches using PSIBLAST; Multiple sequence alignment: progressive<br>method and Iterative method; Applications of pairwise and multiple sequence<br>alignment; Tools for multiple sequence alignment: CLUSTALW and Pileup<br>(Algorithmic concepts). | 7                |
| III  | Scoring Matrices: Basic concept of a scoring matrix, Similarity and distance<br>matrix, Substitution matrices: Matrices for nucleic acid and proteins<br>sequences, PAM and BLOSUM series, Principles based on which these<br>matrices are derived and Gap Penalty; Predictive Method using Nucleotide<br>Sequence: Introduction, Marking repetitive DNA, Database search, Codon<br>bias detection, detecting functional site in DNA.                                                                                                                                                                                        | 7                |
| IV   | Phylogenetics: Phylogeny and concepts in molecular evolution; nature of data<br>used in taxonomy and phylogeny; definition and description of Phylogenetic<br>trees and various types of trees; Different methods of Phylogenetic tree<br>construction: UPGMA and Fitch-Margoliash Algorithm; case studies in<br>phylogenetic sequence analysis.                                                                                                                                                                                                                                                                             | 8                |
| V    | Protein identification based on composition, Physical properties based on<br>sequence, Motif and pattern, Secondary structure (Statistical method: Chou<br>Fasman and GOR method, Neural Network and Nearest neighbor method)<br>and folding classes, specialized structure or features, Tertiary structures<br>(Homology Modeling); Structure visualization methods (RASMOL, CHIME<br>etc.); Protein Structure alignment and analysis. Application of bioinformatics<br>in drug discovery and drug designing.                                                                                                               | 10               |

| 1 | SUBJECT CODE: BBT051                        | COURSE TITLE: Pharmaceutical             |
|---|---------------------------------------------|------------------------------------------|
|   |                                             | Biotechnology                            |
| 2 | EXAM DURATION: 3 HOURS                      | SEMESTER: V                              |
| 3 | <b>L:T:P::</b> 3 : 0 : 0 <b>CREIDTS :</b> 3 | <b>PREREQUISITES:</b> Basic Knowledge of |
|   |                                             | Molecular Biology, Biochemistry          |

#### **COURSE OBJECTIVES**

To teach the basic concept of Pharmaceutical products and other therapeutic agents.

To develop understanding of drug manufacturing process, storage packaging and storage of APIs.

To provide knowledge of regulatory knowledge, approval of new drug and economics of drug development.

To develop understanding of marketing, regulation and control and scope of pharmaceutical industry.

COURSE OUTCOMES (COS): Upon completion of this course, the students will be able to:

| CO1        | Understand concepts and application of pharmaceutical industry, Therapeutic agents, |  |  |  |
|------------|-------------------------------------------------------------------------------------|--|--|--|
|            | biopharmaceuticals.                                                                 |  |  |  |
| CO2        | Understand the process off drug manufacturing, processing, preservation, analytical |  |  |  |
|            | methods and quality management.                                                     |  |  |  |
| <b>CO3</b> | Apply the knowledge of new drug development, GMP.                                   |  |  |  |
| <b>CO4</b> | Use knowledge of Drug regulation and control.                                       |  |  |  |
| CO5        | Scope and applications of biotechnology in pharmacy.                                |  |  |  |
| CO6        | Economics of drug development in pharma industry.                                   |  |  |  |

#### **CO-PO MAPPING**

|            | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 |
|------------|------------|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|
| CO1        | 3          | 1   | -   | 1   | 1   | 1   | -          | -   | -   | 1    | -    | 1    |
| CO2        | 3          | 1   | 1   | -   | 1   | 1   | 1          | 2   | -   | 1    | -    | 1    |
| CO3        | 3          | 2   | 2   | -   | 1   | 1   | 2          | 1   | -   | -    | 1    | -    |
| <b>CO4</b> | 3          | -   | -   | 3   | -   | 1   | -          | -   | -   | 2    | -    | -    |
| CO5        | 3          | -   | 2   | -   | 1   | 1   | -          | 1   | -   | 2    | 1    | -    |
| CO6        | 2          | -   | 1   | -   | 1   | 1   | -          | 1   | -   | -    | -    | 1    |

#### REFERENCES

- 1. Walsh, G., (1998) Biopharmaceuticals: Biochemistry and Biotechnology, Wiley.
- **2.** Leon Lachman et al (1986) Theory and Practice of Industrial Pharmacy, 3 Edition, Lea and Febiger
- 3. Remington's (1971) Pharmaceutical Science, Mark Publishing and Co

| COURS    | E DETAILS: PHARMACEUTICAL BIOTECHNOLOGY                                                                                                                                                                                                                                                                                                                                             |                  |  |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|
| UNITS    | CONTENTS                                                                                                                                                                                                                                                                                                                                                                            | LECTURE<br>HOURS |  |  |  |  |  |
| Unit I   | Introduction to drugs and pharmacy: An overview and history of<br>pharmaceutical industry. Introduction: Therapeutic categories such as<br>Analgesics, Anticancer, Antiviral, Anticoagulant, Analgesics,<br>Antibiotics, Use of therapeuticagents, Biopharmaceuticals.                                                                                                              | 5                |  |  |  |  |  |
| Unit II  | Bulk drug manufacturers, Type of reactions in bulk drug manufacture3and processes. Specialrequirement for bulk drug manufacture.3                                                                                                                                                                                                                                                   |                  |  |  |  |  |  |
| Unit III | Compressed table, wet granulation-dry granulation or slugging-direct<br>compression-tablet presses, coating of tablets, capsules, sustained<br>action dosage forms-parental solution-oral liquidsinjections-ointment-<br>topical applications, Preservation, analytical methods and test for<br>variousdrug and pharmaceuticals, packing-packing techniques, quality<br>management. | 15               |  |  |  |  |  |
| Unit IV  | New drug development and approval process: Strategies for new drug discovery, finding a lead compound, combinatorial approaches to new drug discovery, pre-clinical and clinical trials, GMP, Economics of drug development.                                                                                                                                                        | 9                |  |  |  |  |  |
| Unit V   | The business and the future of Biopharmaceuticals. Drug regulation<br>and control.Scope and applications of biotechnology in pharmacy.                                                                                                                                                                                                                                              | 10               |  |  |  |  |  |

| 1 | SUBJECT CODE: BBT052                       | <b>COURSE TITLE:</b> Nano Biotechnology |
|---|--------------------------------------------|-----------------------------------------|
| 2 | <b>EXAM DURATION:</b> 3 HOURS              | SEMESTER: V                             |
| 3 | <b>L:T:P::</b> 3 : 0: 0 <b>CREIDTS :</b> 3 | PREREQUISITES: Basic knowledge of       |
|   |                                            | Chemistry and Analytical Techniques.    |

#### **COURSE OBJECTIVES:**

teach the concept of nanobiotechnology and nanofabrication techniques.

develop understanding synthesis of metallic nanoparticles.

provide knowledge of biological synthesis of nanoparticles.

teach the analytical techniques used in nanotechnology and its application in characterization of nanomataterials of biomedical importance.

#### **COURSE OUTCOMES:** Upon completion of this course, the students will be able to:

| CO1        | plain and demonstrate the basics of nanoscience, nanobiotechnology and its techniques. |
|------------|----------------------------------------------------------------------------------------|
| CO2        | derstand the synthesis of metal nanoparticles by chemical process.                     |
| CO3        | rform the biological synthesis of metal nanoparticles.                                 |
| <b>CO4</b> | timate the toxicity, antibacterial property of metal nanoparticles.                    |
| CO5        | derstand the synthesis of carbon nanotubes from carbon source.                         |
| CO6        | plain the nano characterization tools and techniques.                                  |

#### **CO-PO MAPPING (1 TO 3 SCALE)**

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO- | PO- | PO- |
|-------|------|------|------|------|------|------|------|------|------|-----|-----|-----|
|       |      |      |      |      |      |      |      |      |      | 10  | 11  | 12  |
| CO-1  | 3    | 2    | 1    | 1    | 1    | 2    | 2    | 1    | 1    | 2   | 1   | 3   |
| CO-2  | 1    | 3    | 2    | 2    | 3    | 1    | 2    |      |      |     | 2   | 3   |
| CO-3  |      | 3    | 2    | 2    | 2    | 1    | 2    | 2    | 2    |     | 2   | 2   |
| CO-4  |      | 3    | 2    | 1    | 3    | 2    | 1    | 3    |      |     | 2   | 3   |
| CO-5  |      |      |      | 3    | 2    | 1    | 1    | 2    | 2    |     | 1   | 1   |
| CO-6  | 3    |      | 2    | 2    | 1    | 1    | 2    | 1    | 1    |     | 1   | 2   |

Reference Book:

- 7. Nanotechnology by Mark Ratner and Daniel Ratner, Pearson Education.
- 8. Guozhong Cao, "Nanostructures and Nanomaterials, synthesis, properties and applications", Imperial College Press, 2004.
- 9. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, 2002.
- 10. Microfabrication and Nanomanufacturing- Mark James Jackson.
- 11. MEMS and Nanotechnology Based sensors and devices communication, Medical and Aerospace applications A.R.Jha.
- 12. Drug Delivery: Engineering Principles for Drug Therapy, M. Salzman.

| Course | Course Details: Nano Biotechnology                                                                                                                                                                                                         |                  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|
| Unit   | Content                                                                                                                                                                                                                                    | Contact<br>Hours |  |  |  |  |
| Ι      | Nanobiotechnology, History, Origin, Fundamental Concepts, Bottomup<br>versus Top-down approaches, Discussion on Micro and Nanofabrication,<br>Current research, Tool and Techniques, Applications and Implications and<br>Nanofabrication. |                  |  |  |  |  |
| II     | Carbon nanotubes and related structures, Properties, Synthesis, Applications,<br>Metal nanoparticles types and their synthesis, Application of Gold, Silver<br>and Zinc oxide nanoparticles and Nano chemicals.                            |                  |  |  |  |  |
| III    | Atomic force microscopy (AFM), Scanning tunneling microscopy (STM),<br>improved nanodiagnostic devices, Drug delivery tools through<br>nanotechnology                                                                                      |                  |  |  |  |  |
| IV     | Synthesis and characterization of different classes of biomedical polymers-<br>their uses inpharmaceutical, cardiovascular ophthalmologic orthopedic<br>areas.                                                                             |                  |  |  |  |  |
| V      | Micro and Nano biosensor, Bioavailability, Nanoimaging agents, Tumor<br>Targeting through nanotechnology, Quantam dots technology and its<br>applications                                                                                  |                  |  |  |  |  |

| 1 | SUBJECT CODE: BBT053                        | COURSE TITLE: BIOMEDICAL                 |  |  |  |  |
|---|---------------------------------------------|------------------------------------------|--|--|--|--|
|   |                                             | INSTRUMENTATION                          |  |  |  |  |
| 2 | <b>EXAM DURATION:</b> 3 HOURS               | SEMESTER: V                              |  |  |  |  |
| 3 | <b>L:T:P::</b> 3 : 0 : 0 <b>CREIDTS :</b> 3 | <b>PREREQUISITES:</b> Basic Knowledge of |  |  |  |  |
|   |                                             | analytical techniques                    |  |  |  |  |

#### **COURSE OBJECTIVES**:

To teach the concept and application of Biomedical instrumentation

To develop understanding of biomedical instruments and its process involved in cardiovascular measurements.

To provide knowledge non-invasive diagnostic instrumentation, ultrasonic measurement and biotelemetry etc.

To teach the instruments involved in clinical laboratory, biomedical instruments in surgery and medical imaging

COURSE OUTCOMES (SIX): Upon completion of this course, the students will be able to:

| CO1        | Explain and demonstrate the instrumentation involved in biomedicals.                 |  |  |  |
|------------|--------------------------------------------------------------------------------------|--|--|--|
| <b>CO2</b> | Understand the working and application of plethymography, electrocardiography and    |  |  |  |
|            | pacemakers etc.                                                                      |  |  |  |
| <b>CO3</b> | Explain the ultrasonic measurements, biotelemetry and other related instrumentation. |  |  |  |
| CO4        | Applications of Instrumentation for the clinical laboratory.                         |  |  |  |
| CO5        | Explain the Medical Imaging equipment.                                               |  |  |  |
| CO6        | Explain the electrical safety of medical equipment.                                  |  |  |  |

#### CO-PO MAPPING (1 TO 3 SCALE)

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| 1   | 1   | 2   | 1   |     |     |     |     |     |     |      |      |      |
| 2   | 2   |     |     | 3   |     | 1   |     |     |     |      |      |      |
| 3   | 1   | 2   | 3   |     |     | -   |     |     |     |      |      |      |
| 4   | 3   | 1   | 2   |     |     | 2   |     |     |     |      |      |      |
| 5   | 1   | 2   |     |     |     | 1   |     |     |     |      |      |      |
| 6   | 1   | 2   |     |     |     | 3   |     |     |     |      |      |      |

#### REFERENCES

- 1. Cromwell, L., Weibell, F.J. and Pfeiffer, E.A. (1980) Biomedical instrumentation and measurements. Englewood Cliffs, N.J: Prentice-Hall.
- 2. Khandpur, R.S. (2005) Biomedical instrumentation: Technology and applications. New York: McGraw-Hill.

- 3. Northrop, R.B. (2004) Analysis and application of analog electronic circuits to biomedical instrumentation Robert B. Northrop. Boca Raton, Fla: CRC.
- 4. Cromwell, L. (1976) Medical Instrumentation for Health Care. Englewood Cliffs, N.J: Prentice-Hall.

| Course | e Details: BIOMEDICAL INSTRUMENTATION                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Unit   | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contact<br>Hours |
| Ι      | History and development of biomedical instrumentation, biometrics, Basic transducer principles: active and passive transducers, transducers for biomedical applications; origin of biopotential and its propagation, sources of bioelectric potentials, electrocardiogram, electro encephalogram, electromyogram and other bioelectric potentials. Biopotential Electrodes: types of electrodes surface, needle and microelectrodes, biochemical transducers. | 9                |
| II     | The Cardiovascular system, Cardiovascular measurements:<br>electrocardiography, measurement of blood pressure, measurement of blood<br>flow and cardiac output, plethymography, measurement of heart sounds;<br>Patient care and monitoring: elements of intensive care unit, pacemakers and<br>defibrillators ,Measurements in the respiratory system: mechanics of<br>breathing, gas exchange and distribution, respiratory therapy equipment.              | 6                |
| III    | Non-invasive diagnostic instrumentation: Temperature measurements<br>ultrasonic measurements, the nervous system and neuronal communication<br>measurement in nervous systems, Instrumentation for sensory measurements<br>and the study of behaviors, pshycophysiological measurements,<br>Biotelemetry.                                                                                                                                                     | 7                |
| IV     | Instrumentation for the clinical laboratory, Automation of chemical tests,<br>Biomedical instruments for surgery, Haemodialysis machines. X-ray<br>machines and digital radiography.                                                                                                                                                                                                                                                                          | 6                |
| V      | Medical Imaging equipments, the computer in biomedical instrumentation<br>and applications, microprocessors, Electrical safety of medical equipment,<br>physiological effects of electric current.                                                                                                                                                                                                                                                            | 7                |

| 1 | SUBJECT CODE: BBT054                        | <b>COURSE TITLE: Metabolic Engineering</b> |
|---|---------------------------------------------|--------------------------------------------|
| 2 | <b>EXAM DURATION:</b> 3 HOURS               | SEMESTER: V                                |
| 3 | <b>L:T:P::</b> 3 : 0 : 0 <b>CREIDTS :</b> 3 | PREREQUISITES: Basic Knowledge of          |
|   |                                             | Biochemistry                               |

#### **COURSE OBJECTIVES:**

To teach the concept and application of metabolic engineering

To develop understanding metabolites production in different pathways and regulatory mechanism.

To provide knowledge biosynthesis of metabolites

To teach the bioconversions, product inhibition and factors affecting bioconversions.

#### **COURSE OUTCOMES (SIX):** Upon completion of this course, the students will be able to:

| CO1        | Explain basic concepts of metabolism and importance of metabolic engineering           |  |  |  |
|------------|----------------------------------------------------------------------------------------|--|--|--|
| <b>CO2</b> | Understand the production of metabolites and its regulatory mechanism                  |  |  |  |
| CO3        | Explain the applications, specificity and product inhibition of bioconversion.         |  |  |  |
| <b>CO4</b> | Regulation of enzyme production and strain improvement                                 |  |  |  |
| CO5        | Understand the general principles of intermediary metabolism, including the regulation |  |  |  |
|            | of metabolic pathways at both the enzyme and cellular levels.                          |  |  |  |
| CO6        | Explore mixed or sequential bioconversions and the conversion of insoluble substances. |  |  |  |

#### **CO-PO MAPPING (1 TO 3 SCALE)**

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO- | PO- | PO- |
|-------|------|------|------|------|------|------|------|------|------|-----|-----|-----|
|       |      |      |      |      |      |      |      |      |      | 10  | 11  | 12  |
| CO-1  | 1    | 1    | 1    | 1    | 2    | 2    | 1    | 1    | 2    | 3   | 1   | 2   |
| CO-2  | 1    | 1    | 1    | 2    | 2    | 1    | 2    | 1    | 1    | 2   | 1   | 1   |
| CO-3  | 1    | 1    | 2    | 1    | 1    | 2    | 1    | 1    | 1    | 2   | 1   | 1   |
| CO-4  | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 2    | 1    | 3   | 1   | 1   |
| CO-5  | 1    | 2    | 1    | 1    | 1    | 1    | 1    | 1    | 2    | 2   | 1   | 1   |
| CO-6  | 1    | 2    | 1    | 1    | 1    | 2    | 1    | 1    | 1    | 1   | 1   | 1   |

- 1. G. Stephanopoulos, A. Aristidou and J. Nielsen, Metabolic Engineering Principles and Methodologies, Academic Press, 1998
- 2. Daniel I. C. Wang, Malcolm D. Lilly, Arthur E. Humphrey, Peter Dunnill, Arnold I.Demain, Fermentation and Enzyme Technology,1st edition John Wiley& Sons, Reprint, 2005
- 3. Christina Smolke, The Metabolic Pathway Engineering Handbook (Two Volume) Set 1st edition CRC press, 2009.
- 4. Stanbury P. F. and Whitaker A., Principles of Fermentation Technology, Pergamon Press, 1984.

| COUR | SE DETAILS: METABOLIC ENGINEERING                                                                                                                                                                                                                                                      |                  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Unit | Content                                                                                                                                                                                                                                                                                | Contact<br>Hours |
| Ι    | Basic concept of metabolism, anabolism & catabolism, Importance of<br>metabolic engineering, General Principles of Intermediary Metabolism,<br>Regulation of Pathways, Strategies for Pathway Analysis. Understanding the<br>role of Bioinformatics in the study of metabolic pathways | 6                |
| II   | Synthesis of primary metabolites: Amino acid synthesis pathways and its regulation at enzyme level and whole cell level, Alteration of feedback regulation, Limiting accumulation of end products                                                                                      | 8                |
| III  | Biosynthesis of secondary metabolites: Regulation of secondary metabolite<br>pathways, precursor effects, prophase, idiophase relationship, producers of<br>secondary metabolites, applications of secondary metabolites.                                                              | 12               |
| IV   | Bioconversions: Applications of Bioconversions, Factors affecting<br>bioconversions, Specificity, Yields, Product inhibition, mixed or sequential<br>bioconversions, Conversionof insoluble substances                                                                                 | 7                |
| V    | Regulation of enzyme production: Strain selection, Genetic improvement of strains, Gene dosage, metabolic pathway manipulations to improve fermentation, Feedback repression, Catabolite Repression, optimization and control of metabolic activities.                                 | 09               |

| 1 | SUBJECT CODE: BBT055                        | COURSE TITLE: Biofuel & Alcohol<br>Technology |
|---|---------------------------------------------|-----------------------------------------------|
| 2 | <b>EXAM DURATION:</b> 3 HOURS               | SEMESTER: V                                   |
| 3 | <b>L:T:P::</b> 3 : 0 : 0 <b>CREIDTS :</b> 3 | PREREQUISITES: Basic Knowledge of             |
|   |                                             | Fermentation and Bioconversion                |

#### **COURSE OBJECTIVES:**

To teach the concept and application biofuels and alcohol technology

To develop understanding different alcoholic fermentation techniques.

To provide knowledge Biochemistry of alcohol production, recycling and quality control.

Concepts of Biomass conversion to heat and power

#### COURSE OUTCOMES (SIX): Upon completion of this course, the students will be able to:

| CO1        | Explain basic concepts of metabolism and importance of metabolic engineering             |
|------------|------------------------------------------------------------------------------------------|
| CO2        | Understand the production of metabolites and its regulatory mechanism                    |
| CO3        | Explain the applications, specificity and product inhibition of bioconversion.           |
| <b>CO4</b> | Regulation of enzyme production and strain improvement                                   |
| CO5        | Identify and evaluate various raw materials used in the alcohol industry, and understand |
|            | their storage and handling requirements to ensure quality and safety.                    |
| CO6        | Understand the production of yeast as a single-cell protein and its applications in the  |
|            | industry.                                                                                |

#### **CO-PO MAPPING (1 TO 3 SCALE)**

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO- | PO- | PO- |
|-------|------|------|------|------|------|------|------|------|------|-----|-----|-----|
|       |      |      |      |      |      |      |      |      |      | 10  | 11  | 12  |
| CO-1  | 2    | 1    | 1    | 1    | 2    | 1    | 2    | 1    | 1    | 1   | 1   | 1   |
| CO-2  | 1    | 1    | 1    | 2    | 1    | 2    | 1    | 1    | 1    | 1   | 1   | 1   |
| CO-3  | 2    | 1    | 1    | 1    | 2    | 1    | 2    | 1    | 2    | 3   | 1   | 1   |
| CO-4  | 1    | 2    | 1    | 1    | 1    | 2    | 1    | 1    | 1    | 1   | 1   | 1   |
| CO-5  | 1    | 2    | 1    | 2    | 1    | 1    | 1    | 1    | 1    | 3   | 1   | 1   |
| CO-6  | 1    | 2    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 3   | 1   | 1   |

- Chemical Process Principles Part I, (1995) Material and Energy Balances by Olaf A Hougen, Kwenneth M. Watson, and Roland A Ragatz, CBS Publishers and Distributors.
- 2. He alcohol text book by Kathryn AnnJacques, T. P. Lyons, D. R. Kelsall
- 3. Product Recovery in Bioprocess Technology ", 1990 BIOTOL Series, VCH,
- 4. Shreve's Chemical Process Industries, 5th Ed. Reference
- 5. Out lines of Chemical Technology by Charles E. Dryden

| COURSE DETAILS: BIOFUEL & ALCOHOL TECH. |                                                                                                                                                                                                                                                                                                                                                                                                             |                  |  |  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|
| Unit                                    | Content                                                                                                                                                                                                                                                                                                                                                                                                     | Contact<br>Hours |  |  |
| Ι                                       | Introduction to Alcohol Technology, Raw Material of Alcohol Industry,<br>Storage & handling of Raw material in detail, Study of different yeast strains<br>used in alcohol industries, Study of yeast production as single protein cell.                                                                                                                                                                    | 9                |  |  |
| П                                       | Study of different alcoholic fermentation techniques, Batch fermentation,<br>Continuous fermentation, Modem techniques of Continuous fermentation,<br>Bio still fermentation, Encillium process, Wet milling of grain for alcohol<br>production, Grain dry milling cooking for alcohol production, Use of<br>cellulosic feed stocks for alcoholproduction, Scaling in distilleries, Fusel oil<br>separation | 9                |  |  |
| III                                     | Study of different recycling process, Biochemistry of alcohol production, The management of fermentation in the production of alcohol. Alcohol distillation-The fundamental, Parameters & affecting alcoholic fermentations, By product of alcoholic fermentation, Distillery quality control, Alcoholometry                                                                                                | 10               |  |  |
| IV                                      | Various biofuels/ bioenergy from biomass. Biomass conversion to heat and power: thermal gasification of biomass, anaerobic digestion. Biomass conversion to biofuel:thermochemical conversion, syngas fermentation.                                                                                                                                                                                         | 10               |  |  |

| 1 | SUBJECT CODE: BBT056                        | COURSE TITLE: Descriptive Statistics & |
|---|---------------------------------------------|----------------------------------------|
|   |                                             | Process Control                        |
| 2 | EXAM DURATION: 3 HOURS                      | SEMESTER: V                            |
| 3 | <b>L:T:P::</b> 3 : 0 : 0 <b>CREIDTS :</b> 3 | PREREQUISITES: Basic Knowledge of      |
|   |                                             | Mathematics                            |

#### **COURSE OBJECTIVES:**

To teach and demonstrate the representation of numerical data.

To develop understanding different and concept of probability, Binomial distribution and testing of significance.

Understand the Correlation and Regression analysis.

Concepts of Design of Experiments and statistical process control and capability analysis.

COURSE OUTCOMES (SIX): Upon completion of this course, the students will be able to:

| CO1        | Diagrammatic and graphical representation of numerical data.                               |  |  |  |
|------------|--------------------------------------------------------------------------------------------|--|--|--|
| CO2        | Analyze Data Dispersion.                                                                   |  |  |  |
| CO3        | Apply concept of probability, binomial distribution and other statistical tools in solving |  |  |  |
|            | complex scientific problems.                                                               |  |  |  |
| CO4        | Understand the regression analysis.                                                        |  |  |  |
| CO5        | Design the experiment using statistical methods.                                           |  |  |  |
| <b>CO6</b> | Explain statistical process control and capability analysis.                               |  |  |  |

#### CO-PO MAPPING (1 TO 3 SCALE)

| СО/РО | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-<br>10 | PO-<br>11 | PO-<br>12 |
|-------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|
| CO-1  | 3    | 2    |      |      | 2    |      |      |      |      | 1         |           | 2         |
| CO-2  | 3    | 3    |      |      |      |      |      |      |      | 1         |           | 2         |
| CO-3  | 3    | 3    | 2    | 2    | 3    |      |      |      |      |           |           | 2         |
| CO-4  | 3    | 3    | 2    | 2    |      |      |      |      |      | 1         |           | 2         |
| CO-5  | 3    | 3    | 3    | 3    |      |      |      |      |      |           | 2         | 2         |
| CO-6  | 3    | 3    | 2    | 3    | 3    |      | 2    |      |      |           |           | 2         |

- 1. C. Montgomery Douglas (1994) Applied Statistics and Probability for Engineers, 4<sup>th</sup> Edition.
- 2. C. Montgomery Douglas (2013) Statistical Quality Control, 7<sup>th</sup> Edition.
- 3. G. W. Snedecor & W.G. Chochran (1989) Statistical Methods.
- 4. T. T. Soong (2004) Fundamentals of Probability and Statistics for Engineers.

| COUR | SE DETAILS: DESCRIPTIVE STATISTICS & PROCESS CONTROL                                     |         |
|------|------------------------------------------------------------------------------------------|---------|
| Unit | Content                                                                                  | Contact |
|      |                                                                                          | Hours   |
| Ι    | Descriptive Statistics: Diagrammatic and graphical representation of numerical           | 8       |
|      | data, Formation of frequency distribution, histogram, cumulative frequency               |         |
|      | distribution, polygon and O-give curve, measures of central tendencies – mean,           |         |
|      | median, mode. Measures of dispersion: mean deviation, standard deviation,                |         |
|      | variance, quartile deviation and coefficient variance, Moments (up to 4 <sup>th</sup> ), |         |
|      | Measures of skewness and kurtosis for grouped and ungrouped data.                        |         |
| II   | Probability & Hypothesis Testing: Concept of Probability - Classical                     | 9       |
|      | definition, Basic theorems of probability, Types of probability, Conditional             |         |
|      | probability, Theorem of total probability, Normal Distribution, The Central              |         |
|      | Limit Theorem, Binomial distribution, Poisson's Distribution, The Poisson's              |         |
|      | approximation to the Binomial Distribution. Testing of significance, large               |         |
|      | sample test for population mean and proportions, Test of population means-               |         |
|      | single, two samples, and paired t-test, chi square test. ANOVA.                          |         |
| III  | Correlation and Regression analysis: Product moment and rank, correlation                | 6       |
|      | coefficient, simple regression, method of least squares for estimation of                |         |
|      | regression coefficients, concept of sampling and sampling distribution,                  |         |
|      | sampling from nominal distribution, standard error.                                      |         |
| IV   | Design of Experiments (DOE): Design of Experiments (DOE) approach to                     | 8       |
|      | optimization - traditional (linear) approach (OFAT) and multi-dimensional                |         |
|      | approach (Box-Bhenken Design, central composite design, Plackett-Burman                  |         |
|      | Design, Downhill Method, Full factorial, Fractional factorial design).                   |         |
| V    | Control Charts: Introduction to statistical process control and capability               | 7       |
|      | analysis: Chance and assignable cause of quality variation, Statistical basis of         |         |
|      | process monitoring: control chart, choice of control charts, analysis of control         |         |
|      | chart, variable of control charts, X bar and R chart, Attribute control chart,           |         |
|      | Determining process and measurement capability.                                          |         |

| 1 | SUBJECT CODE: BBT057                        | <b>COURSE TITLE:</b> 3D Printing Techniques |
|---|---------------------------------------------|---------------------------------------------|
| 2 | <b>EXAM DURATION:</b> 3 HOURS               | SEMESTER: V                                 |
| 3 | <b>L:T:P::</b> 3 : 0 : 0 <b>CREIDTS :</b> 3 | <b>PREREQUISITES:</b> Basic knowledge of    |
|   |                                             | instrumentation, CAD CAM and statistics     |

#### **COURSE OBJECTIVES:**

To teach the concept and application prototyping fundamental.

To develop understanding models and specifications, stereo lithography apparatus and layeringtechnology

To provide knowledge of laminated object manufacturing and related techniques and process. Concepts of selective laser sintering, fused deposition modeling

COURSE OUTCOMES (SIX): Upon completion of this course, the students will be able to:

| CO1 | Explain basic concepts of 3-D printing technology.                                       |
|-----|------------------------------------------------------------------------------------------|
| CO2 | Understand the application, case studies, working, principles of 3-D printing technology |
| CO3 | Explain the laminated object manufacturing and fused deposition modeling.                |
| CO4 | Apply the knowledge of 3-D Printing techniques to develop novel engineering models       |
| CO5 | To be able to use acquired knowledge for designing of prototypes                         |
| CO6 | Apply the knowledge of 3-D Printing techniques to develop novel prototypes               |

#### CO-PO MAPPING (1 TO 3 SCALE)

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-<br>10 | РО-<br>11 | PO-<br>12 |
|-------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|
| CO-1  | 2    | 1    | 2    | 1    | 2    | 1    | 2    | 2    | 3    | 1         | 3         | 3         |
| CO-2  | 2    | 1    | 2    | 2    | 2    | 1    | 2    | 1    | 1    | 1         | 2         | 3         |
| CO-3  | 2    | 2    | 1    | 2    | 2    | 2    | 1    | 3    | 2    | 2         | 2         | 3         |
| CO-4  | 2    | 3    | 2    | 2    | 2    | 2    | 1    | 1    | 2    | 2         | 1         | 3         |
| CO-5  | 2    | 1    | 2    | 1    | 1    | 2    | 1    | 2    | 2    | 2         | 1         | 3         |
| CO-6  | 2    | 2    | 1    | 2    | 2    | 1    | 1    | 3    | 3    | 1         | 1         | 3         |

#### **REFERENCES:**

- **1.** Chua C.K., Leong K.F. and LIM C.S(1997) Rapid prototyping: Principlesand Applications, World Scientific publications, 3<sup>rd</sup> Ed.
- 2. D.T. Pham and S.S. Dimov, (2001) "Rapid Manufacturing", Springer, 2001
- **3.** Terry Wohlers, "Wholers Report 2000", Wohlers Associates
- 4. Paul F. Jacobs (1996) "Rapid Prototyping and Manufacturing"–, ASME Press
- Ian Gibson, Davin Rosen, Brent Stucker (2014) "Additive Manufacturing Technologies, Springer, 2<sup>nd</sup> Ed

| COUR      | COURSE DETAILS: 3D Printing Techniques                                                                                                                                                                                                                                                                                                                                                                                        |                      |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|
| UNIT<br>S | CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                      | LECTU<br>RE<br>HOURS |  |  |  |  |
| Ι         | Introduction, Prototyping fundamentals, Historical development,<br>Advantages of AMT, commonly used terms, process chain, 3D<br>modelling, Data Conversion, and transmission, Checking and<br>preparing, Building, Post processing, RP data formats,<br>Classification of AMT process, Applications to various fields                                                                                                         | 8                    |  |  |  |  |
| II        | Liquid based systems: Stereo lithography apparatus (SLA): Models<br>and specifications, process, working principle, photopolymers,<br>photo polymerization, layering technology, laser and laser scanning,<br>applications, advantages and disadvantages, case studies. Solid<br>ground curing (SGC): Models and specifications, process,<br>working, principle, applications, advantages and<br>disadvantages, case studies. | 12                   |  |  |  |  |
| III       | Solid based systems: Laminated object manufacturing (LOM):<br>Models and specifications, Process, Working principle, Applications,<br>Advantages and disadvantages, Case studies. Fused Deposition<br>Modeling (FDM): Models and specifications, Process, Working<br>principle, Applications, Advantages and<br>disadvantages, Case studies, practical demonstration                                                          | 10                   |  |  |  |  |
| IV        | Powder Based Systems: Selective laser sintering (SLS): Models and specifications, process, working principle, applications, advantages and disadvantages, case studies. Three-dimensional printing (3DP): Models and specification, process, working principle, applications, advantages and disadvantages, case studies.                                                                                                     | 10                   |  |  |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                               | 40                   |  |  |  |  |

| 1 | SUBJECT CODE: BBT058                        | COURSE TITLE: Molecular Modeling & Drug  |
|---|---------------------------------------------|------------------------------------------|
|   |                                             | Design                                   |
| 2 | <b>EXAM DURATION:</b> 3 HOURS               | SEMESTER: V                              |
| 3 | <b>L:T:P::</b> 3 : 0 : 0 <b>CREIDTS :</b> 3 | PREREQUISITES: Basic knowledge molecular |
|   |                                             | biology, computer& mathematics           |

#### **COURSE OBJECTIVES:**

To teach the fundamental concept of molecular modeling and drug design.

To develop understanding molecular mechanisms and protein folding

To provide knowledge of homology modeling, model optimization & validation of protein models.

Concepts of drug designing including QSAR modeling and molecular docking

#### COURSE OUTCOMES (SIX): Upon completion of this course, the students will be able to:

| CO1 | Explain basic concepts and application of molecular modeling and drug development. |  |  |  |  |
|-----|------------------------------------------------------------------------------------|--|--|--|--|
| CO2 | Understand the application of molecular dynamics, molecular mechanism and its      |  |  |  |  |
|     | application inprotein folding                                                      |  |  |  |  |
| CO3 | Explain the concept and application of homology modeling.                          |  |  |  |  |
| CO4 | Apply the knowledge of molecular modeling in drug designing.                       |  |  |  |  |
| CO5 | Apply the knowledge of molecular modeling in drug development                      |  |  |  |  |
| CO6 | To be able to use acquired knowledge for commercial products                       |  |  |  |  |

#### **CO-PO MAPPING (1 TO 3 SCALE)**

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | <b>PO-7</b> | PO-8 | PO-9 | PO- | PO- | PO- |
|-------|------|------|------|------|------|------|-------------|------|------|-----|-----|-----|
|       |      |      |      |      |      |      |             |      |      | 10  | 11  | 12  |
| CO-1  | 1    | 1    | 1    | 2    | 1    | 1    | 2           | 2    | 1    | 2   | 2   | 3   |
| CO-2  | 2    | 2    | 2    | 1    | 1    | 2    | 1           | 1    | 1    | 2   | 1   | 3   |
| CO-3  | 1    | 1    | 1    | 2    | 2    | 2    | 1           | 1    | 2    | 1   | 2   | 3   |
| CO-4  | 1    | 2    | 2    | 1    | 1    | 3    | 2           | 2    | 1    | 2   | 2   | 3   |
| CO-5  | 2    | 1    | 2    | 3    | 3    | 2    | 3           | 3    | 3    | 2   | 1   | 3   |
| CO-6  | 1    | 2    | 2    | 2    | 2    | 2    | 2           | 2    | 2    | 1   | 1   | 3   |

- 1. Molecular Modelling (2013) Principles and applications, A. Leach
- 2. Molecular Modelling (2011), Hans Peter, Heltje & Gerd Folkens, VCH.
- 3. Chemical Applications of Molecular Modelling (2000) , Jonathan Goodman.

| COURSE DETAILS: Molecular Modeling & Drug Design |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |  |  |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|
| UNITS                                            | CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LECTURE<br>HOURS |  |  |  |  |
| I                                                | Introduction to Molecular Modeling; What are models used for? Areas of<br>application – Single molecule calculation, Assemblies of molecules;<br>Reaction of the molecules; Drawbacks of mechanical models as compared<br>to graphical models; Co-ordinate systems two – matrix, potential energy<br>surface; Postulates of quantum mechanics, electronic structure calculations,<br>Ab initio, Semi-empirical and Density functional theory calculations,<br>Molecular size versus accuracy; Approximate molecular orbital theories. | 8                |  |  |  |  |
| п                                                | Molecular Modeling by Homology, construction of frame work, selecting<br>variable regions, Back bone and side chain placement and refinement,<br>Optimization and validation of protein models. Threading and Ab-initio<br>modeling, Ramchandran plot.                                                                                                                                                                                                                                                                                | 8                |  |  |  |  |
| ш                                                | Introduction to QSAR for lead module: Linear and nonlinear modeled equations, Biological activities, Physicochemical parameters and Molecular descriptors, Application of QSAR modeling in drug discovery.                                                                                                                                                                                                                                                                                                                            | 8                |  |  |  |  |
| IV                                               | Molecular Mechanisms: Introduction to Force field, Use of various<br>parameters for force field calculation (Bond length, angle angle, torsion angle,<br>Electrostatic interaction, Vander waals interactions, Miscellaneous<br>interaction); Introduction Molecular Dynamics using simple models,<br>Dynamics with continuous potentials, Constant temperature and constant<br>dynamics, Conformation searching, Systematic search, Applications to<br>protein folding.                                                              | 8                |  |  |  |  |
| v                                                | 3D pharmacophores modeling, molecular docking, De novo Ligand design,<br>Free energies and solvation, electrostatic and non-electrostatic contribution<br>to free energies; 3D data base searching and virtual screening, Sources of<br>data, molecular similarity and similarity searching, combinatorial libraries –<br>generation and utility.                                                                                                                                                                                     | 8                |  |  |  |  |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40               |  |  |  |  |

| 1 | SUBJECT CODE: BBT551          | <b>COURSE TITLE:</b> Genetic Engineering Lab     |
|---|-------------------------------|--------------------------------------------------|
| 2 | <b>EXAM DURATION:</b> 2 HOURS | SEMESTER: V                                      |
| 3 | L:T:P:: 0 : 0 : 2 CREIDTS : 1 | <b>PREREQUISITES:</b> Genetic Engineering theory |
|   |                               | course                                           |

#### **COURSE OBJECTIVES:**

To isolate the various biomolecules and genetic materials from cells and tissues

To develop understanding of estimation of Genetic material

To provide practical knowledge restriction digestion, transformation, screening and verification of cloning

Practical knowledge of ligation, blotting and cloning.

COURSE OUTCOMES (SIX): Upon completion of this course, the students will be able to:

| CO1        | Demonstrate the isolation genetic materials                                                |
|------------|--------------------------------------------------------------------------------------------|
| CO2        | Perform experiments related to cloning, ligation, restriction digestion and transformation |
|            | etc.                                                                                       |
| CO3        | Demonstrate the Southern Blotting for identification of desired DNA in a pool DNA          |
|            | samples                                                                                    |
| <b>CO4</b> | Perform the bacterial cell competent for transformation                                    |
| CO5        | To be able to express foreign protein                                                      |
| CO6        | To be able to use acquired knowledge for commercial products                               |

#### **CO-PO MAPPING (1 TO 3 SCALE)**

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-<br>10 | РО-<br>11 | PO-<br>12 |
|-------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|
| CO-1  | -    | -    | -    | 3    | 3    | -    | -    | -    | -    | -         | -         | 3         |
| CO-2  | -    | -    | -    | 3    | 3    | -    | -    | -    | -    | -         | -         | 3         |
| CO-3  | -    | -    | -    | 3    | 3    | -    | -    | -    | -    | -         | -         | 3         |
| CO-4  | -    | -    | -    | 3    | 3    | -    | -    | -    | -    | -         | -         | 3         |
| CO-5  | -    | -    | -    | 3    | 3    | -    | -    | -    | -    | -         | -         | 3         |
| CO-6  | -    | -    | -    | 3    | 3    | -    | -    | -    | -    | -         | -         | 3         |

- Laboratory manual on Molecular Biology & geneticEngineering-A new approach (2012), R.S. Sengar
- 2. Laboratory Manual for Genetic Engineering (2009) S. john Vennison.Prentics hall publication

| S. NO. | LIST OF<br>EXPERIMENT                                                                  |
|--------|----------------------------------------------------------------------------------------|
| 1      | Isolation of RNA and its estimation by orcinol method                                  |
| 2      | Isolation of plasmid DNA and its estimation by diphenylamine reaction                  |
| 3      | Elution of plasmid DNA from agarose gel                                                |
| 4      | To perform restriction digestion of $\lambda$ DNA                                      |
| 5      | Dephosphorylation of restriction enzyme digested vector pUC18                          |
| 6      | To make bacterial cells competent for transformation                                   |
| 7      | To perform of transformation of the desired bacterial strain with plasmid DNA          |
| 8      | Screening of transformed colonies by X gal and IPTG                                    |
| 9      | Verification of cloning by colony PCR and screening of the positive colonies           |
| 10     | To perform a Southern Blotting for identification of desired DNA in a pool DNA samples |
| 11     | To perform ligation of $\lambda$ EcoRI digest using T4DNA ligase                       |

| 1 | SUBJECT CODE: BBT552         | <b>COURSE TITLE:</b> Fermentation Biotechnology |  |  |  |
|---|------------------------------|-------------------------------------------------|--|--|--|
|   |                              | Lab                                             |  |  |  |
| 2 | EXAM DURATION: 2 HOURS       | SEMESTER: V                                     |  |  |  |
| 3 | L:T:P:: 0 : 0: 2 CREIDTS : 1 | PREREQUISITES: Fermentation                     |  |  |  |
|   |                              | Biotechnology theory course                     |  |  |  |

#### **COURSE OBJECTIVES:**

determine the growth pattern of microbial cell.

rform the production of antibiotics, enzymes and acids through fermentative process

provide practical knowledge for production of ethanol, and down streaming.

actical knowledge of solid state fermentation & submerged fermentation

#### **COURSE OUTCOME:** Upon completion of this course, the students will be able to:

| CO1 | monstrate the growth pattern of <i>E. coli</i> .                                  |  |  |  |
|-----|-----------------------------------------------------------------------------------|--|--|--|
| CO2 | rform experiments related to production of antibiotics, enzymes and acids through |  |  |  |
|     | fermentation process.                                                             |  |  |  |
| CO3 | monstrate the downstream processing of fermentative products.                     |  |  |  |
| CO4 | rform the solid state fermentation and submerged fermentation.                    |  |  |  |
| CO5 | rform experiments related to production of antibiotic.                            |  |  |  |
| CO6 | fect of carbon source on microbes.                                                |  |  |  |

#### **CO-PO MAPPING (1 TO 3 SCALE)**

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO- | PO- | PO- |
|-------|------|------|------|------|------|------|------|------|------|-----|-----|-----|
|       |      |      |      |      |      |      |      |      |      | 10  | 11  | 12  |
| CO-1  | 3    |      |      | 1    | 1    |      | 2    | 2    | 2    |     | 2   | 3   |
| CO-2  |      | 3    | 2    | 2    | 1    |      | 1    | 2    | 1    |     | 1   | 3   |
| CO-3  |      |      | 3    | 1    | 2    |      | 2    | 1    | 2    |     | 2   | 2   |
| CO-4  |      | 1    | 2    | 3    | 1    |      | 1    | 2    | 1    | 1   | 2   | 3   |
| CO-5  |      | 3    |      |      | 2    |      | 2    | 1    |      |     | 1   | 2   |
| CO-6  |      |      | 2    | 3    | 1    |      | 2    | 1    | 2    |     | 2   | 3   |

- Practical Manual on Fermentation Technology by S. Kulandaivelu, S. Janarthanan.
- J.Jayaraman, "Laboratory Manual in Biochemistry", New Age International Publications.
- Fermentation-A practical Approach by G T Banks-FEBS Press.

| Course Details: Fermentation Technology Lab |                                                                          |                  |  |  |
|---------------------------------------------|--------------------------------------------------------------------------|------------------|--|--|
| Unit                                        | Content                                                                  | Contact<br>Hours |  |  |
| Ι                                           | Determine the growth patterns and specific growth rate of <i>E. coli</i> | 2                |  |  |
| II                                          | Determine the effect of peptone concentration on <i>E</i> .coli growth   | 2                |  |  |

| III  | Fermentative production of Penicillin Antibiotics using Penicilium                 | 2 |
|------|------------------------------------------------------------------------------------|---|
|      | chrysogenum.                                                                       |   |
| IV   | To study the induction effect of $\beta$ -galactosidase enzyme in <i>E. coli</i> . | 2 |
| V    | Upstream and Downstream of bioprocess for the production of Citric acid by         | 2 |
|      | Aspergillus niger.                                                                 |   |
| VI   | Citric acid production from whey with glucose as supplementary carbon              | 2 |
|      | source by Aspergillus niger.                                                       |   |
| VII  | Microbial production of citric acid by solid state fermentation process.           | 2 |
| VIII | Microbial production of enzymes by (a) solid state and (b) submerged               | 2 |
|      | fermentation.                                                                      |   |
| IX   | Fermentative production of Ethanol using Saccharomyces cerevisiae                  | 2 |

| 1 | SUBJECT CODE: BBT553          | COURSE TITLE: Bioinformatics I (Virtual Lab) |
|---|-------------------------------|----------------------------------------------|
| 2 | EXAM DURATION: 3 HOURS        | SEMESTER: V                                  |
| 3 | L:T:P:: 0 : 0 : 2 CREIDTS : 2 | <b>PREREQUISITES:</b> Bioinformatics theory  |
|   |                               | course                                       |

#### **COURSE OBJECTIVES:**

| To retrieval of the sequence data                                                       |
|-----------------------------------------------------------------------------------------|
| Demonstration of locating the chromosome and retrieval of gene expression data          |
| To provide practical knowledge for retrieval of PubMed data                             |
| Practical knowledge of ORF finding, motif information and retrieval of Gene information |

#### COURSE OUTCOMES (SIX): Upon completion of this course, the students will be able to:

| CO1 | Demonstrate the retrieval of sequence data                                                |
|-----|-------------------------------------------------------------------------------------------|
| CO2 | Perform experiments related to locating chromosome and gene expression data               |
| CO3 | Demonstrate the data retrieval system of PubMed.                                          |
| CO4 | Perform the ORF finding and retrieval of gene information                                 |
| CO5 | Utilize the Protein Data Bank (PDB) database to retrieve and interpret structural data of |
|     | proteins.                                                                                 |
| CO6 | Use the Prosite database to identify and retrieve motif information associated with       |
|     | protein sequences.                                                                        |

#### **CO-PO MAPPING (1 TO 3 SCALE)**

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-<br>10 | PO-<br>11 | PO-<br>12 |
|-------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|
| CO-1  | 3    | 1    | 1    | 1    | 1    | 2    | 1    | 1    | 2    | 1         | 1         | 1         |
| CO-2  | 3    | 2    | 2    | 1    | 1    | 1    | 1    | 1    | 2    | 1         | 1         | 1         |
| CO-3  | 1    | 2    | 1    | 1    | 1    | 2    | 1    | 1    | 1    | 1         | 1         | 1         |
| CO-4  | 1    | 1    | 2    | 1    | 1    | 2    | 1    | 1    | 1    | 1         | 1         | 1         |
| CO-5  | 3    | 1    | 1    | 2    | 1    | 1    | 1    | 1    | 1    | 1         | 1         | 1         |
| CO-6  | 3    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 2    | 2         | 2         | 1         |

- Alphey L. DNA sequencing: from experimental methods to bioinformatics. BIOS scientific publishers Ltd; 1997
- 2. Iftekhar M, Ghalib MR. Bioinformatics Practical Manual
- 3. Karthikeyan M, Vyas R. Practical chemoinformatics. Springer; 2014 May 6

| COUR | COURSE DETAILS: BIOINFORMATICS I (VIRTUAL LAB)                                                                                                                                                                   |                  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|
| Unit | Content                                                                                                                                                                                                          | Contact<br>Hours |  |  |  |
| Ι    | Retrieving sequence data from Entrez: Learn how to access and retrieve nucleotide and protein sequences from the Entrez system, a key resource for bioinformatics research.                                      | 1                |  |  |  |
| Π    | Retrieving structural data of a protein using PDB database: Acquire the skills to retrieve and interpret 3D protein structures from the Protein Data Bank (PDB) to understand protein function and interactions. | 1                |  |  |  |
| III  | Retrieving Motif Information of a Protein Using Prosite: Explore how to identify and analyze protein motifs using the Prosite database, enhancing your understanding of protein function and classification.     | 1                |  |  |  |
| IV   | Locating the chromosome of a Gene : Develop the ability to accurately locate<br>and interpret the chromosomal position of genes, which is crucial for studying<br>genomic organization and gene function.        | 2                |  |  |  |
| V    | Finding ORF of a Given Sequence: Gain expertise in identifying open reading frames (ORFs) within nucleotide sequences, a fundamental step in gene prediction and analysis.                                       | 1                |  |  |  |
| VI   | Locating the chromosome of a Gene: Learn to identify the chromosomal location of specific genes, which is essential for understanding their role in genetics and genomic organization.                           | 2                |  |  |  |

B.Tech. (Biotechnology) 3<sup>rd</sup> Year 6<sup>th</sup> Sem Syllabus 
 SUBJECT CODE: BBT 601

 EXAM DURATION: 3 Hours

 L: T: P :: 3 : 0 : 0
 CREDITS: 3

COURSE TITLE: Bioprocess Engineering II SEMESTER: VI (EVEN) PREREQUISITE: Basic Knowledge of Fermentation Biotechnology, Bioprocess Engineering I and Microbiology

#### **Course Objectives:**

- To impart knowledge on fundamentals of stoichiometry of reactions used in bioreactor operations.
- To explain the principles of bioreactors and their application to upstream and downstream processing.
- To impart knowledge of different kinetics models applied for Batch, CSTR, PFR and other types of reactors.
- To describe the different downstream processing, product fractionation and polishing techniques.

#### **Course Outcomes (Six):**

On completion of this course, the students will be able to:

- Perform unit conversions; solve material and energy balance problems in unit operations.
- Analyze the stoichiometry of cell growth and product formation.
- Learn about classification and kinetics of reactions, elementary and non-elementary reactions.
- Kinetic analysis of batch reactor, CSTRS and Plug flow reactor data.
- Recognize the basis for various steps in downstream processing design strategy for purification of a product.
- Learn techniques such as precipitation, membrane separation and chromatographic techniques for the purification of a targeted protein(s) or any other biological material.

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-<br>10 | PO-<br>11 | PO-<br>12 |
|-------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|
| CO-1  | 2    | 2    | 1    | 1    | 1    |      |      |      |      |           |           | 1         |
| CO-2  | 2    | 2    | 2    | 1    | 1    |      |      |      |      |           |           |           |
| CO-3  | 2    | 2    | 2    | 2    | 2    |      |      |      |      |           |           |           |
| CO-4  | 1    | 1    | 1    | 1    | 2    |      |      |      |      |           |           |           |
| CO-5  | 2    | 2    | 1    | 2    | 2    |      |      |      |      |           |           |           |
| CO-6  | 2    | 1    | 2    | 2    | 2    |      |      |      |      |           |           |           |

#### CO-PO Mapping (1 to 3 scale)

#### **Reference Book:**

| S.<br>No. | Name Of Authors/Books/Publishers                         | Year of Publication/<br>Reprint |
|-----------|----------------------------------------------------------|---------------------------------|
| 1.        | K.V. Narayanan and B. Lakshmikuttyamma, Stoichiometry &  | 2006                            |
|           | Process Calculations, Prentice Hall Publishing, Delhi.   |                                 |
| 2.        | B.I. Bhatt and S. M. Vora, Stoichiometry, 4th Edn., Tata | 2001                            |
|           | McGraw-Hill Publishing Company Ltd., New Delhi.          |                                 |
| 3.        | M. L. Shuler and F. Kargi, Bioprocess Engineering-Basic  | 2004                            |
|           | Concepts, 2nd Edn., Prentice Hall.                       |                                 |

| 4. | P. M. Doran, Bioprocess Engineering Principles, 2 <sup>nd</sup> Edn, | 2005 |
|----|----------------------------------------------------------------------|------|
|    | Academic Press.                                                      |      |
| 5. | N. K. Prasad, Downstream Process Technology - A New Horizon          | 2012 |
|    | in Biotechnology", Prentice Hall of India, New Delhi.                |      |
| 6. | M. R. Ladisch, Bioseparations Engineering: Principles, Practice      | 2001 |
|    | and Economics, 1st Edn., Wiley Interscience.                         |      |
| 7. | J. D. Seader and E.J. Henley, Separation Process Principles, 3rd     | 2010 |
|    | Edn., Wiley.                                                         |      |
| 8. | Sivasankar B, Bioseparations: Principles and Techniques,             | 2008 |
|    | Prentice-Hall of India Pvt. Ltd.                                     |      |
| 9. | P. A. Belter, E. L. Cussler, and W.S. Hu, Bioseparation:             | 1994 |
|    | Downstream Processing for Biotechnology, 2nd Edn., Wiley-            |      |
|    | Interscience.                                                        |      |

#### **Course Details**

| COUR | COURSE DETAILS: BIOPROCESS ENGINEERING II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|
| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contact<br>Hours |  |  |  |  |  |
| I    | <b>Stoichiometry of Bioprocesses: Material and Energy Balance</b><br>Introduction to conversion of units, Dimensionless groups applied in<br>bioprocess, graphical differentiation and integration, material balance<br>equation for steady and unsteady state, simplifications for steady-state<br>processes with and without chemical reaction, stoichiometry of cell growth<br>and product formation, degrees of reduction of substrate and biomass, yield<br>coefficients of biomass and product formation, maintenance coefficients,<br>oxygen consumption and heat evolution in aerobic cultures. Energy<br>balance - heat capacity, estimation of heat capacities, general energy<br>balance, Enthalpy calculation, enthalpy change: heat of combustion, heat<br>of reaction for biomass production processes, energy-balance equation for<br>cell culture and fermentation processes. | 13               |  |  |  |  |  |
| п    | Kinetics of homogenous reactions: classification of reactions, reaction rate, speed of reaction, rate equation, concentration-dependent term of rate equation, rate constant, order and molecularity, representation of elementary and non-elementary reactions, Kinetic models for non-elementary reactions, temperature dependent term of a rate equation, activation energy and temperature dependency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10               |  |  |  |  |  |
| III  | Kinetic analysis of batch reactor data: Integral and differential methods for<br>analyzing kinetic data, interpretation of constant volume batch reactor, data<br>for zero, first, second and third order reactions, half-life period, irreversible<br>reaction in parallel and series, auto catalytic reactions. Kinetic<br>interpretation of batch reactor data for single reactions, interpretation of<br>variable volume batch reactor data for zero, first, second and third order<br>reactions, Ideal batch reactor, steady state CSTR and plug flow reactors<br>and their use for kinetic interpretation. Design for single reaction: size<br>comparison of single reactors, plug flow reaction in series and/or parallel,<br>equal and different size of mixed reactor in series, finding the best system                                                                             | 10               |  |  |  |  |  |

|    | of given conversion, recycle reactor, Design of multiple reactions in batch, CSTR and PFR.                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| IV | <b>Downstream Processing</b><br>Introduction to the various downstream processing steps and their significance in biotechnology, Cell disruption; cell separation, Centrifugation and Filtration: Flocculation, and sedimentation. Extraction: Basic equations of extraction, Aqueous two-phase extraction, batch extraction, staged extraction and differential extraction, Supercritical fluid extraction; Adsorption and Leaching, Precipitation; Membrane-based purification: Reverse osmosis, Dialysis. | 8  |
| v  | <b>Product Resolution / Fractionation and Polishing</b><br>General chromatography theory and the different chromatographic<br>techniques like adsorption, partition, ion exchange, affinity, gel filtration<br>and HPLC, Dialysis, Crystallization, and Drying. Any Emerging<br>Technologies in downstream processing in biotechnology industries.                                                                                                                                                           | 8  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49 |

## **SUBJECT CODE:** BBT 602 **EXAM DURATION:**3 HOURS **L: T: P ::** 3 : 1 : 0 CREDITS: 4

**COURSE TITLE:** PLANT BIOTECHNOLOGY **SEMESTER:** VI (EVEN)

**PREREQUISITE:** Basic knowledge of genetic engineering ,biochemistry and elementary biology

# **Course Objectives:**

- To impart the basic concepts of plant tissue culture.
- To develop understanding about tissue culture techniques and involved culturing strategies.
- To impart knowledge about the importance of tissue culture in crop improvement.

# **Course Outcomes :**

On successful completion of the course, the student will be able to:

- Understand the principle and basic requirements for plant tissue culture.
- Explain the difference between tissue and organ culture and their applicability.
- Understand haploid culture and in vitro selection of mutants.
- Analyse somaclonal variation for improved crop varieties in vitro cultures.
- Identify suitable cryopreservation and reculture technique for the cultured tissue.
- Understand the development of transgenic plants through genetic manipulations.

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO- | PO- | PO- |
|-------|------|------|------|------|------|------|------|------|------|-----|-----|-----|
|       |      |      |      |      |      |      |      |      |      | 10  | 11  | 12  |
| CO-1  | 2    | 1    | 2    | 1    | 2    | 1    | 1    |      |      |     |     | 1   |
| CO-2  | 3    | 2    | 2    | 1    | 3    | 1    | 1    |      |      |     |     | 1   |
| CO-3  | 2    | 1    | 2    | 1    | 3    | 1    | 1    |      |      |     |     | 1   |
| CO-4  | 2    | 2    | 2    | 1    | 3    | 1    | 1    |      |      |     |     | 1   |
| CO-5  | 2    | 1    | 2    | 1    | 3    | 1    | 1    |      |      |     |     |     |
| CO-6  | 2    | 2    | 2    | 1    | 3    | 1    | 1    |      |      |     |     | 1   |

CO-PO Mapping (1 to 3 scale)

| S. No. | Name Of Authors/Books/Publishers                              | Year of Publication/<br>Reprint |
|--------|---------------------------------------------------------------|---------------------------------|
| 1.     | Hudson T Hartmann: Plant Propagation-Principle and Practices, | 2015                            |
|        | Pearson Education India; 8 edition.                           |                                 |
| 2.     | Principles of Plant Biotechnology- An Introduction of Genetic | 1985                            |
|        | Engineering in Plants by S.H. Mantell, J.W. Mathews and R.A.  |                                 |
|        | Mckee, Blackwell Scientific Publications.                     |                                 |
| 3.     | Chopra V L, Sharma R P & Swaminathan M S: Agricultural        | 1996                            |
|        | Biotechnology by Science Pub Inc.                             |                                 |
| 4.     | Hamish A, Collin & Sue Edwards: Plant Cell Culture, BIOS      | 1998                            |
|        | Scientific Publishers.                                        |                                 |
| 5.     | Razdan M K: An Introduction to Plant Tissue Culture, Science  | 2003                            |
|        | Publishers.                                                   |                                 |

| 6. | Plant Tissue Culture: Theory and Practice by S.S. Bhojwani M.K. | 1996 |
|----|-----------------------------------------------------------------|------|
|    | Razdan, Elsevier Science.                                       |      |
| 7. | H.S. Chawla. Plant Biotechnology, Oxford & IBH Publishing       | 1998 |
|    | 2020Bioprocess Technology - Kinetics & Reactors" by A Moser,    |      |
|    | Springer-Verlag.                                                |      |

| Cour | se Details: PLANT BIOTECHNOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Contact<br>Hours |
| Ι    | <b>Introductory history of plant biotechnology:</b> Laboratory organization;<br>Principles of Plant Tissue Culture. Concepts of totipotency, explants,<br>inoculums, acclimatization. Nutrition of plant cells; Nutrient media:<br>Composition of commonly used nutrient culture media with respect to their<br>contents like inorganic chemicals, organic constituents. An appraisal of<br>different media, selection of media, Sterilization of the media. Hormones:<br>Auxins, Cytokinins, Gibberellins, Abscisic Acid, Ethylene etc. Explant<br>preparation and Surface sterilization. Basic procedure for Aseptic Tissue<br>transfer. | 10               |
| II   | <b>Culture of plant materials-</b> explants selection and technique of culturing.<br>Organogenesis, Embryogenesis, Somaclonal variation, germiclonal variation.<br>Establishment, growth and maintenance of Callus and cell suspension culture,<br>Methods of sub culturing and transfer of regenerated plants to the field. Tissue<br>and organ culture; Cellular differentiation and regulation of morphogenesis;<br>Somatic embryogenesis; Control of organogenesis and embryogenesis; Single<br>cell culture                                                                                                                           | 10               |
| III  | Haploid production: Androgenesis; Anther and microspore culture;<br>Gynogenesis; Embryo culture and rescue in agricultural and horticultural<br>corps; Protoplast isolation; Culture– regeneration; Somatic hybrid-cybrids; In<br>vitro selection of mutants – mutants for salts, disease, cold, drought, herbicide<br>and other stress conditions; Micropropagation: Application of<br>micropropagation in agriculture and forestry. Meristem culture and virus<br>elimination; Shoot tip culture.                                                                                                                                        | 8                |
| IV   | Improved crop varieties through somaclonal variation in invitro cultures.<br>Application of tissue culture for crop improvement in agriculture, horticulture<br>and forestry. Cryopreservation and slow growth cultures, Freezing and<br>storage, thawing, reculture. Application of plant tissue culture production of<br>secondary metabolites and other industrial products.                                                                                                                                                                                                                                                            | 8                |
| V    | Genetic transformation using Ti plasmid Manipulation of gene expression in<br>plants; Production of marker free transgenic plants. Developing insect-<br>resistance, diseaseresistance, herbicide resistance plants. Genetic<br>manipulation of flower pigmentation, Developing quality of seed storage,<br>Provitamin A, iron proteins in rice, modification of food plant taste and<br>appearance, yield increase in plants.                                                                                                                                                                                                             | 8                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44               |

**SUBJECT CODE:** BBT 603 **EXAM DURATION:**3 HOURS **L: T: P ::** 3 : 1 : 0 CREDITS: 4 **COURSE TITLE:** BIOINFORMATICS II **SEMESTER:** VI (EVEN) **PREREQUISITE:** Elementary knowledge of bioinformatics I, molecular biology and computer

# **Course Objectives:**

- To provide knowledge to analyze various computational methods involved in protein modeling, RNA structure prediction and drug designing.
- To teach various concepts of machine learning, Artificial Neural Networks, document clustering.

# **Course Outcomes:**

On completion of this course, the students will be able to

- Understand the various tools and techniques related to insilico modeling of biomolecules along with methods of drug designing, protein docking
- Analyze problems related to collection and analysis of biological data
- Develop steady and time dependent solutions along with their limitations
- Apply Machine learning techniques for decision making
- Learning information retrieval using NLP
- Understand molecular dynamics and simulation techniques

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO- | PO- | PO- |
|-------|------|------|------|------|------|------|------|------|------|-----|-----|-----|
|       |      |      |      |      |      |      |      |      |      | 10  | 11  | 12  |
| CO-1  | 2    | 2    | 2    | 2    | 3    |      |      |      |      |     |     | 1   |
| CO-2  | 2    | 2    | 3    | 3    | 3    |      |      |      |      |     |     | 1   |
| CO-3  | 2    | 2    | 2    | 3    | 3    |      |      |      |      |     |     | 1   |
| CO-4  | 2    | 2    | 2    | 3    | 3    |      |      |      |      |     |     |     |
| CO-5  | 2    | 2    | 3    | 3    | 3    |      |      |      |      |     |     |     |
| CO-6  | 2    | 2    | 2    | 3    | 3    |      |      |      |      |     |     | 1   |

CO-PO Mapping (1 to 3 scale)

| S. No. | Name Of Authors/Books/Publishers                                | Year of Publication/<br>Reprint |
|--------|-----------------------------------------------------------------|---------------------------------|
| 1.     | Computational Methods in Biotechnology – Salzberg S. L. et al., | 1998                            |
|        | Elsevier Science.                                               |                                 |
| 2.     | D.W.Mount; Bioinformatics- Sequence and genome analysis; Cold   | 2004                            |
|        | Spring HarbourLabpress.                                         |                                 |
| 3.     | Hand Book Of Bioengineering- Skalak R & ShuChien,               | 1986                            |
|        | McGrawHill.                                                     |                                 |
| 4.     | Statistical Methods in Bioinformatics-Evens & Grants, Springer- | 2006                            |
|        | Verlag, NY.                                                     |                                 |

| 5. | Purifing Protein for Proteomics, Richard J. Sinpson, I.K.                 | 2004 |
|----|---------------------------------------------------------------------------|------|
|    | International Pvt. Ltd.                                                   |      |
| 6. | Computational Molecular Biology- Setubal and Meidanis, PWS publishing Co. | 1997 |

| Course | e Details: BIOINFORMATICS II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Unit   | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contact<br>Hours |
| I      | Inference problems and techniques for molecular biology. Overview of key<br>inference problems in biology: Homology identification, Genomic sequence<br>annotation (Genes and ORFs identification), Protein structure prediction<br>(Secondary and Tertiary structure prediction), Protein function prediction,<br>Biological network identification, Next generation sequencing, Microarray data<br>analysis                                                                                                                                | 10               |
| Π      | Basics of RNA Structure prediction and its limitations, Features of RNA<br>Secondary Structure, RNA structure prediction methods: Based on<br>selfcomplementary regions in RNA sequence, Minimum free energy methods,<br>Suboptimal structure prediction by MFOLD, Prediction based on finding most<br>probable structure and Sequence co-variance method. Application of RNA<br>structure modeling                                                                                                                                          | 10               |
| III    | Machine learning: Decision tree induction, Artificial Neural Networks, Hidden<br>Markov Models, Genetic Algorithms, Simulated Annealing, Support vector<br>machines; The relation between statistics and machine learning; Evaluation of<br>prediction methods: Parametric and Nonparametric tests, cross-validation and<br>empirical significance testing (empirical cycle), Clustering (Hierarchical and<br>Kmean).                                                                                                                        | 8                |
| IV     | Basic concept of Force field in molecular modeling (Potential energy calculation);<br>Overview of key computational simulation techniques: Introduction to simulation,<br>Computer simulation techniques, Types of computer simulation (Continuous,<br>Discrete-event and Hybrid simulation), Differential equation solvers, Parameter<br>estimation, and Sensitivity analysis.                                                                                                                                                              | 10               |
| V      | Overview of key techniques for the management of large document collections and<br>the biological literature: Document clustering, Information retrieval system;<br>Natural Language Processing: Introduction, Major areas of NLP, Natural language<br>information extraction; Insilico Drug Designing: Major steps in Drug Designing,<br>Ligand and Structure based drug designing, Protein-ligand docking, QSAR<br>Modeling, Pharmacodynamics (Efficacy & Potency) &Pharmacokinetics<br>(ADME), Lipinski's rule of five, Pharmacogenomics. | 6                |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42               |

**SUBJECT CODE:** BBT061 **EXAM DURATION:** 3 Hours **L: T: P ::** 3 : 0 : 0 **CREDITS**: 3 Genetic **COURSE TITLE:** Animal Biotechnology **SEMESTER:** VI (EVEN) **PREREQUISITE:** Basic Knowledge of

Engineering and Immunology

#### **Course Objectives:**

- To introduce in vitro culture techniques of animal cells and tissues
- To learn different types of culture systems and reactors used for culturing of animal cells
- To elaborate various applications of animal tissue cultures with specific reference to transgenic animal production

#### **Course Outcomes (Six):**

On completion of this course, the students will be able to:

- Understand basics of animal tissue culture and its importance
- Learn about the different types of animal cell culture media, their maintenance and cultivation of cell lines.
- Understand techniques to establish animal cell cultures invitro as well as different types of reactors and their working
- Learn the strategies involved in developing clones in lab
- Understand the methods of transgene delivery and production of transgenic animals
- Understand the process of stem cell differentiation and their applications with case studies

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-<br>10 | PO-<br>11 | PO-<br>12 |
|-------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|
| CO-1  | 1    | 1    | 1    | 2    | 2    | 1    | 1    | 1    |      |           |           | 1         |
| CO-2  | 2    | 2    | 2    | 2    | 2    | 1    | 1    | 1    |      |           |           | 2         |
| CO-3  | 2    | 2    | 2    | 2    | 2    | 1    | 2    | 1    |      |           |           |           |
| CO-4  | 3    | 3    | 2    | 2    | 1    | 1    | 1    | 2    |      |           |           |           |
| CO-5  | 3    | 3    | 2    | 1    | 3    | 1    | 1    | 2    |      |           |           | 1         |
| CO-6  | 3    | 3    | 2    | 1    | 3    | 1    | 1    | 2    |      |           |           | 1         |

#### **CO-PO Mapping (1 to 3 scale)**

| S. No. | Name Of Authors/Books/Publishers                                                       | Year of Publication/<br>Reprint |
|--------|----------------------------------------------------------------------------------------|---------------------------------|
| 1.     | B. Hafez and E.S.E Hafez, Reproduction in farm animals, 7 <sup>th</sup> Edition, Wiley | 2000                            |
|        | Blackwell                                                                              |                                 |
| 2.     | G.E. Seidel, Jr. and S.M. Seidel, Training manual for embryo transfer in               | 1991                            |
|        | cattle (FAO Animal Production and Health Paper-77), 1st Edition, W.D.                  |                                 |
|        | Hoard and sons FAO                                                                     |                                 |
| 3.     | I. Gordon, Laboratory production of cattle embryos, 2nd edition, CAB                   | 2003                            |
|        | International                                                                          |                                 |
| 4.     | I. Gordon, Laboratory production of cattle embryos, 2nd edition, CAB                   | 1997                            |
|        | International                                                                          |                                 |

# 5. Animal cell culture: Ian Freshney

2015

| COURS | E DETAILS: ANIMAL BIOTECHNOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Unit  | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contact Hours |
| I     | Basic cell culture techniques, Types of cell culture media; Ingredients of media; Physiochemical properties; CO2 and bicarbonates; Buffering; Oxygen; Osmolarity; Temperature; Surface tension and foaming; Balance salt solutions; Antibiotics growth supplements; Foetal bovine serum; Serum free media; Trypsin solution; Selection of medium and serum; Conditioned media; Other cell culture reagents; Preparation and sterilization of cell culture media, serum and other reagents.                    | 8             |
| Π     | Different tissue culture techniques; Types of primary culture; Chicken embryo fibroblast culture; Chicken liver and kidney culture; Secondary culture; Trypsinization; Cell separation; Continuous cell lines; Suspension culture; Organ culture etc.; Behaviour of cells in culture conditions: division, growth pattern, metabolism of estimation of cell number; Development of cell lines; Characterization and maintenance of cell lines, stem cells; Cryopreservation; Common cell culture contaminants | 8             |
| Π     | Cell cloning and selection; Transfection and transformation of cells; Commercial scale<br>production of animal cells, stem cells and their application; Application of animal cell<br>culture for in vitro testing of drugs; Testing of toxicity of environmental pollutants in cell<br>culture; Application of cell culture technology in production of human and animal viral<br>vaccines and pharmaceutical proteins                                                                                       | 8             |
| IV    | Cell culture reactors; Scale-up in suspension; Scale and complexity; Mixing and aeration;<br>Rotating chambers; Perfused suspension cultures; Fluidized bed reactors for suspension<br>culture; Scale-up in monolayers; Multi-surface propagators; Multi-array disks, spirals and<br>tubes; Roller culture; Micro carriers; Perfused monolayer cultures; Membrane perfusion;<br>Hollow fibre perfusion; Matrix perfusion; Microencapsulation; Growth monitoring                                               | 8             |
| V     | Transgenic animal production; Methods of transgene delivery; Integration of foreign genes<br>and their validation; Gene targeting; Methods and strategies; Improving transgene<br>integration efficiency; Cell lineages and developmental control genes in drosophila and<br>mice; Differentiation of germ layers; Cellular polarity; Stem cell differentiation; Blood<br>cell formation; Fibroblasts and their differentiation; Differentiation of cancerous cells and<br>role of proto oncogenes            | 8             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40            |

 SUBJECT CODE: BBT 062

 EXAM DURATION: 3 Hours

 L: T: P :: 3 : 0 : 0
 CREDITS: 3

 Molecular Biology,

**COURSE TITLE:** Biomarker & Diagnostics **SEMESTER:** VI (EVEN) **PREREQUISITE:** Basic Knowledge of

Immunology and Analytical Techniques

## **Course Objectives:**

- To introduce basics of molecular diagnostics, its scope and applications
- To learn various pathways of cell signaling, eukaryotic cell control system and their components
- To learn different molecular mechanisms of generation of metabolic disorders
- To elaborate various applications of biomarkers in disease diagnostics
- To understand advanced molecular techniques: FISH, CGH, flow cytometry, genome mapping methodology

## **Course Outcomes (Six):**

On completion of this course, the students will be able to:

- Understand the history and basics of Molecular Diagnostics.
- Understand importance of biomarkers in molecular diagnostics
- Understand molecular oncology with specific emphasis on cancer and its relevant cause
- Learn principles and applications of some of advanced molecular diagnostic techniques
- Learn about the different types of molecular markers, their role in diagnostics.
- Understand the basics of chromosome related disorders, techniques like FISH, cytometry and others used in diagnostics.

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-<br>10 | РО-<br>11 | PO-<br>12 |
|-------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|
| CO-1  | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |      |           |           | 3         |
| CO-2  | 2    | 2    | 1    | 2    | 2    | 1    | 1    |      |      |           |           | 1         |
| CO-3  | 2    | 2    | 2    | 1    | 2    | 1    |      |      |      |           |           | 1         |
| CO-4  | 2    | 2    | 2    | 2    | 2    | 1    |      |      |      |           |           | 2         |
| CO-5  | 2    | 1    | 2    | 2    | 2    | 1    |      |      |      |           |           | 1         |
| CO-6  | 2    | 1    | 1    | 1    | 1    | 1    |      |      |      |           |           |           |

## **CO-PO Mapping (1 to 3 scale)**

| S. No. | Name Of Authors/Books/Publishers                                                   |         |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------|---------|--|--|--|--|--|--|
|        |                                                                                    |         |  |  |  |  |  |  |
|        |                                                                                    | Reprint |  |  |  |  |  |  |
| 1.     | Molecular biology of the cell. Bruce Alberts, 6 <sup>th</sup> Edition              | 2014    |  |  |  |  |  |  |
| 2.     | Principles of Tissue Engineering. Robert Lanza. Elsevier Publications              | 2000    |  |  |  |  |  |  |
| 3.     | Introduction to Tissue Engineering, Applications and Challenges. Ravi Birla. Wiley | 2014    |  |  |  |  |  |  |
|        | Publications                                                                       |         |  |  |  |  |  |  |
| 4.     | Molecular Cell Biology: Darnell J, Lodish H and Baltimore D                        | 1990    |  |  |  |  |  |  |
| 5.     | Cell and Molecular Biology: De Robertis EDP and De Robertis EMF                    | 1980    |  |  |  |  |  |  |
| 6.     | An Introduction to Human Molecular Genetics by Pasternak et al., John Wiley & Sons | 2005    |  |  |  |  |  |  |
| 7.     | Human Chromosomes by Miller & Tharman, Springer Publishing Company                 | 2001    |  |  |  |  |  |  |
| 8.     | Molecular Biology of the Cell by Alberts et al., Garland Press                     | 2008    |  |  |  |  |  |  |

| 9.  | Genes IX, by Lewin B, Pearson India                                            | 2007 |
|-----|--------------------------------------------------------------------------------|------|
| 10. | Cell and Molecular Biology by De Robertis and De Robertis, Lipincott & Wilkins | 2007 |
| 11. | Genome III by TA Brown, Garland Press                                          | 2006 |
| 12. | Elements of Medical Genetics by Turnpenny and Ellard, Churchill Livingstone    | 1995 |
| 13. | Animal Cell Culture: Ian Freshney                                              | 2015 |
|     |                                                                                |      |

| COUR |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contact Hours |
| Ι    | Introduction to Molecular Diagnostics: History of diagnostics, Age of molecular diagnostics, Significance, Scope, Rise of diagnostic industry in Indian and global scenario, Cellular Complexity: Cell components, Cell Differentiation, Cellular communication – endocrine signaling, paracrine signaling and autocrine signaling, contact dependent and synaptic communications, Intracellular networks – transport pathways, signaling pathways and metabolic networks. Eukaryotic Cell Control System and their Components, Intracellular cell cycle control system, Extracellular Cell Cycle Control System, Regulation of Cell Growth and Apoptosis, Genetic and epigenetic factors that regulate these pathways, their abnormalities that alter the pathways and cellular functions. | 12            |
| II   | Molecular Oncology Mitochondrial disorders: Cancer – Benign and<br>Malignant neoplasms, multifactorial disposition, Cancer pathogenesis,<br>positive and negative mediators of neoplastic development, Proto-<br>oncogenes, Oncogenes and Tumor suppressors. Allele loss and loss of<br>Heterozygosity. Mitochondrial inheritance, Mitochondrial myopathy,<br>lactic acidosis, MELAS, LHONs, identity testing                                                                                                                                                                                                                                                                                                                                                                               | 8             |
| III  | Biomarkers in disease diagnostics: FDA definition of disease markers,<br>Role of markers in Disease diagnosis. Approaches and methods in the<br>identification of disease markers, predictive value, diagnostic value,<br>emerging blood markers for sepsis, tumor & cancer markers, markers in<br>inflammation and diagnosis of cytoskeletal disorders                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6             |
| IV   | Chromosomes, Human disorders, and Cytogenetic analysis: Structure, types and organization; Chromosome organization, Euchromatin and heterochromatin and Histone modifications. Chromosome banding and nomenclature; Nomenclature and functional significances of chromosome bands. GC and AT rich isochores. Structural and Numerical aberrations and its consequences. X-chromosome dosage compensation and inactivation mechanism. Sex determination and Y chromosome; function, and diseases. Uniparentaldisomy, Genomic Imprinting and disorders. FISH, CGH, Flow cytometry techniques and clinical diagnostics.                                                                                                                                                                        | 10            |
| V    | Genomic instability, Chromosome mapping & Genome plasticity:<br>Common fragile sites and methods of induction, Heritable fragile sites and<br>FXS. Genomic Instability, mechanism and diseases. Trinucleotide Repeats;<br>Mechanism of expansion and triplet repeats and related disorders. Genetic<br>linkage maps, Relation to the probability of recombination, Pedigree<br>analysis with genetic markers and overview of human genome project                                                                                                                                                                                                                                                                                                                                           | 10            |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46            |

 SUBJECT CODE: BBT 063

 EXAM DURATION: 3 Hours

 L: T: P :: 3 : 0 : 0
 CREDITS: 3

 Fermentation

**COURSE TITLE:** Food Biotechnology **SEMESTER:** VI (EVEN) **PREREQUISITE:** Basic Knowledge of

Biotechnology and Microbiology

## **Course Objectives:**

- To introduce significance of microbes in food and food industry
- To learn basic principles of the equipment involved in the commercially important food processing methods and unit operations
- To learn different techniques of food preservation
- To impart knowledge about indicators of food safety and HACCP system

## **Course Outcomes (Six):**

On completion of this course, the students will be able to:

- Understand importance of microbes and their products in food industry.
- Acquire knowledge of types of foods and their production methodologies.
- Learn the techniques of alcohol and brewery industry and solve the challenges of similar and associated industries.
- Learn processing and preservation technologies for milk and dairy products.
- Learn about the different Food preservation and packaging techniques.
- Learn the Hazard Analysis Critical Control Point System (HACCP system) and Predictive Microbiology/Microbial Modelling.

| CO/PO | PO-1 | PO-2 | PO-3 | <b>PO-4</b> | PO-5 | PO-6 | <b>PO-7</b> | PO-8 | PO-9 | PO-<br>10 | PO-<br>11 | PO-<br>12 |
|-------|------|------|------|-------------|------|------|-------------|------|------|-----------|-----------|-----------|
| CO-1  | 2    | 2    | 2    | 3           | 3    | 1    |             |      |      |           |           | 1         |
| CO-2  | 2    | 2    | 2    | 2           | 2    |      |             |      |      |           |           | 1         |
| CO-3  | 2    | 2    | 2    | 2           | 3    |      |             |      |      |           |           |           |
| CO-4  | 2    | 2    | 2    | 2           | 3    |      |             |      |      |           |           |           |
| CO-5  | 2    | 1    | 1    | 2           | 3    |      |             |      |      |           |           |           |
| CO-6  | 1    | 2    | 2    | 2           | 3    | 1    | 3           | 2    |      |           |           |           |

## **CO-PO Mapping (1 to 3 scale)**

| S. No. | Name Of Authors/Books/Publishers                                                      | Year of Publication/<br>Reprint |
|--------|---------------------------------------------------------------------------------------|---------------------------------|
| 1.     | Frazier, W.S. and Weshoff, D.C., 2017. Food Microbiology, 5th Edn.,                   | 2017                            |
|        | McGraw Hill Book Co., New York.                                                       |                                 |
| 2.     | Mann & Trusswell, 2007. Essentials of Human Nutrition.3 <sup>rd</sup> Edition. Oxford | 2007                            |
|        | University Press                                                                      |                                 |
| 3.     | Jay, J.M., 1987. Modern Food Microbiology, CBS Publications, New Delhi                | 1987                            |
| 4.     | Lindsay, 1988. Applied Science Biotechnology. Challenges for the Flavor               | 1988                            |
|        | and Food Industry. Willis Elsevier                                                    |                                 |
| 5.     | Roger, A., Gordon, B. and John, T., 1989. Food Biotechnology                          | 1989                            |

| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Contact<br>Hours |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| I    | History of Microorganisms in food: Historical Developments. Role and significance of microorganisms in foods. Intrinsic and Extrinsic parameters of foods that affect microbial growth. Basic principles of the equipment involved in the commercially important food processing methods and unit operations.                                                                                                                                                                                                                                                                                                      | 8                |
| II   | Microorganisms in food: spoilage of fresh meats and poultry, processed<br>meats, seafood's, fruits and vegetables. Fermented food products, Medical<br>foods, Probiotics and health benefits of fermented milk and foods products.<br>Dehydrated Foods, Enteral Nutrient Solutions (Medical Foods), Single-<br>Cell Protein. Starter cultures, Production process of cheeses, beer, wine and<br>distilled spirits. Process of Brewing, malting, mashing, primary &<br>secondary fermentation. Problems in food industry: catabolic repression,<br>High gravity brewing, B-glucan problem, getting rid of diacetyl. | 10               |
| III  | Determining Microorganisms and/or their Products in Foods:<br>Microbiological Examination of surfaces, Air Sampling, Metabolically<br>Injured Organisms .Enumeration and Detection of Food-borne Organisms<br>.Bioassay and related Methods. Common Food borne diseases. Nutritional<br>boosts and flavor enhancers: Emerging processing and preservation<br>technologies for milk and dairy products.                                                                                                                                                                                                             | 8                |
| IV   | Food Preservation: Food preservation by various methods especially<br>Irradiation, Characteristics of radiations in food preservation, principles<br>underlying the destruction of microorganisms by Irradiation. Application<br>of radiations in food (processing for irradiation). Radappertization,<br>Radicidation, and Radurization of Foods. Effect of Irradiation on Food<br>quality and storage ability. Miscellaneous Food Preservation Methods:<br>High- Pressure Processing, Pulsed Electric Fields, Aseptic Packaging,<br>Manothermosonication (Thermo-ultrasonication).                               | 8                |
| V    | Indicators of Food Safety and Quality: Indicators of Food microbial<br>quality, product quality and food safety. Fecal Indicator Organisms,<br>Predictive Microbiology/Microbial Modeling. The Hazard Analysis<br>Critical Control Point System (HACCP System), Microbiological Criteria.<br>Food borne intoxicants and mycotoxins.                                                                                                                                                                                                                                                                                | 6                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40               |

SUBJECT CODE: BBT 064 Biotechnology EXAM DURATION: 3 Hours L: T: P :: 3 : 0 : 0 CREDITS: 3 Biotechnology COURSE TITLE: Entrepreneurship in

SEMESTER: VI (EVEN) PREREQUISITE: Elementary Knowledge of

and Managerial Economics

## **Course Objectives:**

- To introduce entrepreneurship opportunities in biotechnology
- To learn concepts of entrepreneurs, business development strategies, market
- To understand role of government schemes in development of Bio-entrepreneurship
- To discuss emerging biotechnology based industries related to drug development, transgenics, environmental biotechnology
- To understand ethics and IPR in biotech industries

#### **Course Outcomes (Six):**

On completion of this course, the students will be able to:

- Understand the importance of Bio-entrepreneurship and its scope.
- Learn about important factors affecting biotech business.
- Understand the important aspects of establishing bio-industries.
- Learn about different policies by the Government. They will also come to learn about different schemes for setting up biotech industries.
- Learn fundamental aspects of Intellectual property Rights to students who are going to play a major role in development and management of innovative projects in industries.
- Pave the way for the students to catch up Bio-entrepreneurship as a career option

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-<br>10 | PO-<br>11 | PO-<br>12 |
|-------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|
| CO-1  | 1    | 1    | 1    | 1    | 1    | 2    | 1    | 1    | 2    | 2         | 3         | 1         |
| CO-2  | 1    | 1    | 1    | 1    | 1    | 2    | 1    | 2    | 3    | 3         | 3         |           |
| CO-3  | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 2    | 3    | 3         | 3         |           |
| CO-4  | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 2    | 2         | 2         |           |
| CO-5  | 1    |      | 1    |      | 1    | 1    | 1    |      | 2    | 2         | 2         |           |
| CO-6  |      |      | 1    | 1    | 1    |      |      | 2    | 2    | 2         | 3         |           |

## **CO-PO Mapping (1 to 3 scale)**

| S.<br>No. | Name Of Authors/Books/Publishers                                                                                                                                      | Year of Publication/<br>Reprint |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1.        | Biotechnology Entrepreneurship 1 <sup>st</sup> Edition. Starting,<br>Managing, and Leading Biotech Companies. Craig Shimasaki.                                        | 2014                            |
|           | Academic Press.                                                                                                                                                       |                                 |
| 2.        | Introduction to Biotech Entrepreneurship: From Idea to<br>Business: A European Perspective. Matei, Florentina, Zirra,<br>Daniela (Eds.). Springer nature publication. | 2019                            |

| 3. | Biotechnology Entrepreneurship from Science to Solution<br>Start-Up, Company Formation and Organization, Team, | 2010 |
|----|----------------------------------------------------------------------------------------------------------------|------|
|    | Intellectual Property, Financing, Part 1 <sup>st</sup> Edition. Michael L. Salgaller. Logos Press.             |      |
| 4. | How to Start a Biotech Company. Sourish Saha et.al.,<br>Independently published.                               | 2019 |

| COUR | COURSE DETAILS: ENTREPRENEURSHIP IN BIOTECHNOLOGY                                                                                                                                                                                                                                                                                                                                                                                  |                  |  |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|--|
| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                                                            | Contact<br>Hours |  |  |  |  |  |  |
| I    | Entrepreneur - Meaning of Entrepreneur, Evolution of the Concept,<br>Functions of an Entrepreneur, Types of Entrepreneur, Development of<br>Entrepreneurship steps in entrepreneurial process, Biotech<br>Entrepreneurship in India, Identification of Business Opportunities,<br>Qualities, skills and attributes that successful biotech entrepreneurs<br>possess. Case studies of successful and unsuccessful bio-entrepreneurs | 8                |  |  |  |  |  |  |
| п    | Business development in biotechnology - Factors affecting biotech<br>business: (finance, infrastructure, equipment, manpower, resources,<br>project location, end product, quality issues, etc.) Basic principles and<br>practices of management - Definition, concepts and application;<br>Organization types, coordination, control and decision making in<br>management                                                         | 8                |  |  |  |  |  |  |
| III  | Core concept of Market: Identification and evaluation of market potential<br>of various bioentrepreneur sectors. Marketing, Marketing research-<br>concept and techniques, Considerations in establishment of<br>biotechnological start-up - Different models of biotechnological start-ups<br>.The budget for a biotechnological start-up company. Seed capital raising<br>for a biotechnological startup company                 | 8                |  |  |  |  |  |  |
| IV   | Role of government and schemes, financial institutions in fostering Bio-<br>entrepreneurship, Skills in bio-entrepreneurship-Personality and attitude,<br>Organizational behavior, Leadership, Principles of effective<br>communication Body language, public speaking, presentations, business<br>proposal writing.                                                                                                               | 8                |  |  |  |  |  |  |
| v    | Biotechnology: emerging industries with examples from Transgenic,<br>Environmental biotechnology, New drug development, DNA chip<br>technology, Stem cell research, Tissue engineering. Contract Research<br>Organization, marketing consultancy, bio-learning module. Ethics and IPR<br>in biotech-Industries - Fundamentals of ethics in business, Ethical<br>dilemmas in biotech industry, IPR- Introduction, Forms of IPR.     | 8                |  |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40               |  |  |  |  |  |  |

# SUBJECT CODE: BBT 651

**EXAM DURATION:** 2 Hours **L: T: P ::** 0 : 0 : 2 **CREDITS:** 1 theory

# COURSE TITLE: Bioprocess Engineering II Lab SEMESTER: VI (EVEN) PREREQUISITE: Bioprocess Engineering

course

# **Course Objectives:**

- To impart knowledge about the basic fundamental principles of bioprocess engineering by performing different experiments.
- To make them correlate theory and practical process by experimentation.

# **Course Outcomes (Six):**

On successful completion of the course, the student will be able to

- Learn process of cellular disruption and cell components separation
- Learn estimation and separation of proteins using different techniques.
- Understand the process of manufacturing and processing of recombinant proteins.
- Understand the basics of different chromatographic techniques and their applications in manufacturing industries.
- Learn the process of isolation and extraction of phytochemicals
- Learn product polishing techniques.

# **CO-PO Mapping (1 to 3 scale)**

| CO/PO       | <b>PO-1</b> | <b>PO-2</b> | PO-3 | <b>PO-4</b> | <b>PO-5</b> | PO-6 | <b>PO-7</b> | <b>PO-8</b> | PO-9 | PO-<br>10 | PO-<br>11 | PO-<br>12 |
|-------------|-------------|-------------|------|-------------|-------------|------|-------------|-------------|------|-----------|-----------|-----------|
| CO-1        | 2           | 2           | 2    | 1           | 3           |      |             |             | 1    |           | 1         | 1         |
| CO-2        | 2           | 2           | 3    | 1           | 2           |      |             |             |      |           | 1         |           |
| CO-3        | 1           | 1           | 2    | 2           | 2           |      |             |             |      |           |           |           |
| <b>CO-4</b> | 3           | 2           | 2    | 2           | 2           |      |             |             |      |           |           | 1         |
| CO-5        | 2           | 2           | 2    | 2           | 1           |      |             |             |      |           |           |           |
| CO-6        | 2           | 2           | 2    | 2           | 1           |      |             |             |      |           | 1         |           |

| S.  | Name Of Authors/Books/Publishers                               | Year of Publication/ |
|-----|----------------------------------------------------------------|----------------------|
| No. |                                                                | Reprint              |
| 1.  | Scopes, R. K. Protein Purification: Principles and Practice,   | 2013                 |
|     | 3 <sup>rd</sup> Edn, Springer.                                 |                      |
| 2.  | Andreas, H., Walker, J. M., Wilson, K., Clokie, S. (Eds.).     | 2018                 |
|     | Wilson and Walker's Principles and Techniques of               |                      |
|     | Biochemistry and Molecular Biology, United Kingdom:            |                      |
|     | Cambridge University Press.                                    |                      |
| 3.  | Belter, P. A., Cussler, E. L., and Hu, W.S. Bioseparation:     | 1994                 |
|     | Downstream Processing for Biotechnology, 2 <sup>nd</sup> Edn., |                      |
|     | Wiley-Interscience.                                            |                      |

| 4. | Abelson, J. N. Simon, M. I. and Deutscher, M. P. Methods  | 1990 |
|----|-----------------------------------------------------------|------|
|    | in Enzymology: Guide to Protein Purification, Volume 182, |      |
|    | Academic Press.                                           |      |
| 5. | Published research articles related to the experiments    |      |

| S. No | List of Experiments                                                                                 |  |  |  |  |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 1     | Estimation and separation of proteins using different techniques.                                   |  |  |  |  |  |  |  |  |  |
| 2     | Bacterial cell disruption using different methods like physical, chemical and enzymatic methods.    |  |  |  |  |  |  |  |  |  |
| 3     | Downstream processing of a recombinant protein over expressed in bacterial system.                  |  |  |  |  |  |  |  |  |  |
| 4     | Separation of a recombinant protein in bacterial cell lysate using Ammonium sulphate precipitation. |  |  |  |  |  |  |  |  |  |
| 5     | High resolution purification of the recombinant protein by affinity chromatography.                 |  |  |  |  |  |  |  |  |  |
| 6     | Downstream processing of lysozyme from egg white using ion exchange chromatography.                 |  |  |  |  |  |  |  |  |  |
| 7     | Downstream processing of lysozyme from egg white using ion exchange chromatography.                 |  |  |  |  |  |  |  |  |  |
| 8     | Downstream processing of caffeine from tea dust.                                                    |  |  |  |  |  |  |  |  |  |
| 9     | Experiments involving crystallization of the downstream processed material.                         |  |  |  |  |  |  |  |  |  |
| 10    | Product polishing by lyophilisation and drying.                                                     |  |  |  |  |  |  |  |  |  |

**SUBJECT CODE:** BBT 652 **EXAM DURATION:** 2 Hours **L: T: P ::** 0 : 0 : 2 **CREDITS:** 1 course **COURSE TITLE:** Plant Biotechnology Lab **SEMESTER:** VI (EVEN) **PREREQUISITE:** Plant Biotechnology theory

## **Course Objectives:**

- To provide knowledge to apply fundamental principles of plant tissue culture.
- To teach concepts behind culturing techniques from different explants.
- To inculcate the hands on practice attitude in students to perform explants selection, media preparation, sterilization and callus culture initiation.

#### **Course Outcomes (Six):**

On completion of this course, the students will be able to:

- Operate and handle the plant biotechnology lab equipment.
- Perform tissue culture media preparation, sterilization and explants selection.
- Understand in vitro cultures through axillary bud induction
- Analyze plant secondary metabolites from selected medicinal
- Learn DNA/RNA extraction and estimation
- Perform extraction of plant proteins along with estimation.

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | <b>PO-7</b> | PO-8 | PO-9 | PO-<br>10 | PO-<br>11 | PO<br>12 |
|-------|------|------|------|------|------|------|-------------|------|------|-----------|-----------|----------|
| CO-1  | 3    | 1    | 2    | 2    | 3    | 1    | 2           |      | 1    |           | 1         | 2        |
| CO-2  | 2    | 2    | 1    | 1    | 3    | 1    | 1           |      | 1    |           | 1         | 2        |
| CO-3  | 2    | 1    | 3    | 1    | 2    | 1    | 1           |      | 1    |           | 1         | 1        |
| CO-4  | 2    | 2    | 2    | 1    | 1    | 1    | 1           |      | 1    |           | 1         | 1        |
| CO-5  | 2    | 1    | 3    | 2    | 2    | 2    | 2           |      | 1    |           | 1         | 1        |
| CO-6  | 2    | 2    | 3    | 2    | 1    | 1    | 1           |      | 1    |           | 1         | 1        |

## **CO-PO Mapping (1 to 3 scale)**

#### **Reference Book:**

| S.  | Name Of Authors/Books/Publishers                                | Year of Publication/ |  |  |  |
|-----|-----------------------------------------------------------------|----------------------|--|--|--|
| No. |                                                                 | Reprint              |  |  |  |
| 1.  | Plant Biotechnology: Practical Manual by C.C. Giri, ArchanaGiri | 2007                 |  |  |  |
|     | I. K. International Publications.                               |                      |  |  |  |
| 2.  | A Practical Manual For Plant Biotechnology by Tejovathi G,      | 1996                 |  |  |  |
|     | CBS Publishers and Distributors.                                |                      |  |  |  |
| 3.  | Plant Biotechnology: Laboratory Manual For Plant                | 2004                 |  |  |  |
|     | Biotechnology by H.S. Chawla, Oxford and IBH Publishing         |                      |  |  |  |

| S. No | List of Experiments                                            |
|-------|----------------------------------------------------------------|
| 1.    | Preparation of Stocks solution for plant tissue culture media. |
| 2.    | Preparation of MS/B5 medium (semi-solid) and sterilization.    |

| 3.  | Explant selection, preparation and surface sterilization.                             |
|-----|---------------------------------------------------------------------------------------|
| 4.  | To learn culturing, sub culturing and maintenance using selected explants.            |
| 5.  | Initiation of in vitro cultures through axillary bud induction.                       |
| 6.  | Initiation of callus cultures from different explants.                                |
| 7.  | Preparation of artificial seed/synthetic seed for conservation of germplasm.          |
| 8.  | Extraction of DNA/RNA from plants and its estimation.                                 |
| 9.  | Isolation and characterization of plant secondary metabolites from selected medicinal |
|     | plants.                                                                               |
| 10. | Extraction of proteins from plants and its estimation.                                |

SUBJECT CODE: BBT 653 EXAM DURATION: 2 Hours L: T: P :: 0 : 0 : 2 CREDITS: 1 course **COURSE TITLE:** Bioinformatics II Lab **SEMESTER:** VI (EVEN) **PREREQUISITE:** Bioinformatics II theory

## **Course Objectives:**

- To introduce the fundamental principles of bioinformatics
- To make them correlate theory and practical processes through experimentation.

## **Course Outcomes (Six):**

After successful completion of this course, the students will be able to:

- Understand the basic software and tools used in structure prediction of biomolecules
- Conduct experimental procedure for Ramachandran plot and its analysis
- Construct and analyse of restriction maps, QSAR model and homology model
- Identify and structurally modify a natural product, to design a compound with the desired properties and to assess its therapeutic effects, theoretically.
- Enhance their practical knowledge and thus their employability
- Construction of primer for PCR.

| CO/PO | PO-1 | PO-2 | PO-3 | PO-4 | PO-5 | PO-6 | PO-7 | PO-8 | PO-9 | PO-<br>10 | PO-<br>11 | PO-<br>12 |
|-------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|
| CO-1  | 2    | 2    | 2    | 2    | 3    |      |      |      | 2    |           | 1         | 1         |
| CO-2  | 2    | 2    | 2    | 1    | 3    |      |      |      | 1    |           | 2         | 1         |
| CO-3  | 2    | 2    | 2    | 2    | 2    |      |      |      | 1    |           | 1         | 1         |
| CO-4  | 2    | 2    | 2    | 2    | 3    |      |      |      | 1    |           | 2         | 1         |
| CO-5  | 2    | 2    | 3    | 3    | 2    |      |      |      | 1    |           | 1         | 1         |
| CO-6  | 2    | 2    | 3    | 3    | 2    |      |      |      | 1    |           | 1         | 1         |

## **CO-PO Mapping (1 to 3 scale)**

| S.<br>No. | Name Of Authors/Books/Publishers                                                                                                                | Year of Publication/<br>Reprint |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1         | Alphey L. DNA sequencing: from experimental methods to bioinformatics. BIOS scientific publishers Ltd; 1997.                                    | 1997                            |
| 2         | Iftekhar M, Ghalib MR. Bioinformatics Practical Manual                                                                                          | 2015                            |
| 3         | Karthikeyan M, Vyas R. Practical chemoinformatics. Springer; 2014 May 6                                                                         | 2014                            |
| 4         | Brown FK. Chemoinformatics: what is it and how does it impact<br>drug discovery. Annual reports in medicinal chemistry. 1998 Jan<br>1;33:375-84 | 1998                            |

| S. No | List of Experiments                                                                         |
|-------|---------------------------------------------------------------------------------------------|
| 1     | Identification of Distantly related homologous sequences of a given query protein           |
|       | sequence using PSI-BLAST                                                                    |
| 2     | Construct Phylogenetic tree of five evolutionary related protein/nucleotide sequences       |
| 3     | Prediction of secondary structure of RNA using any web server.                              |
| 4     | Construction and analysis of Ramachandran Plot using any suitable web server                |
| 5     | Align two homologous protein structure and calculation the RMSD for the superposition       |
|       | result                                                                                      |
| 6     | Comparative assessment of best available tools for genome annotation                        |
| 7     | Construction of restriction maps for various vectors used in genetic engineering using tool |
|       | "NEB cutter".                                                                               |
| 8     | Primer Design: Construct primers for the given DNA sequence using any suitable web          |
|       | based tool                                                                                  |
| 9     | Generate 2D QSAR model of a set of legend descriptor data                                   |